Young women in sub-Saharan Africa have the highest risk of human immunodeficiency virus (HIV) acquisition through sexual contact of all groups. Vaginal controlled release of antiretrovirals is a priority option for the prevention of sexual transmission of the virus in women. In this manuscript, bilayer films were prepared based on ethylcellulose and a natural polymer (xanthan or tragacanth gum) plasticized with glycerol and tributylcitrate for tenofovir-controlled release. The mechanical properties and microstructure of the blank films were characterized by texture analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. The loaded films were evaluated in simulated vaginal fluid through release and swelling studies and mucoadhesion assessments. The results show that the preparation method produced bilayer films with adequate mechanical properties. The contribution of both layers allowed the sustained release of tenofovir and a mucoadhesion time of up to 360 h. The toxicity of the materials was evaluated in three cell lines of vaginal origin. The films constituted by ethylcellulose and xanthan gum in a 2:1 proportion (EX2-D) showed the longest mucoadhesion time, with 15 days of tenofovir-controlled release, zero toxicity, and optimal mechanical properties. These films are therefore a promising option for offering women a means of self-protection against the sexual transmission of HIV.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.0c00249DOI Listing

Publication Analysis

Top Keywords

bilayer films
12
mechanical properties
12
based ethylcellulose
8
sustained release
8
release tenofovir
8
sexual transmission
8
tenofovir-controlled release
8
mucoadhesion time
8
films
7
release
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!