Flavonoids represent a diversified family of phenylpropanoid-derived plant secondary metabolites. They are widely found in fruits, vegetables, and medicinal herbs. There has been increasing interest on flavonoids because of their proven bioactivity associated with anti-obesity and anti-cancer, anti-inflammatory and anti-diabetic activity. Low bioavailability of flavonoids is a major challenge restricting their applications. Due to safety and economic issues, plant extraction or chemical synthesis could not provide a scalable route for large-scale production. Alternatively, reconstruction of biosynthetic gene clusters in plants and industrially relevant microbes offer significant promise for discovery and scalable synthesis of flavonoids. This review provides an update on biotechnological production of flavonoids. The recent advances on plant metabolic engineering, microbial host, and genetically encoded biosensors are summarized. Plant metabolic engineering holds the promise to improve the yield of specific flavonoids and expand the chemical space of novel flavonoids. The choice of microbial host provides the cellular chassis that could be tailored for various stereo- or regio-selective chemistries that are crucial for their bioactivities. When coupled with transcriptional biosensing, genetically encoded biosensors could be welded into cellular metabolism to achieve high throughput screening or dynamic carbon flux re-allocation to deliver efficient microbial workhorse. The convergence of these technologies will translate the vast majority of plant genetic resources into valuable flavonoids with pharmaceutical/nutraceutical values in the foreseeable future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201900432DOI Listing

Publication Analysis

Top Keywords

plant metabolic
12
metabolic engineering
12
microbial host
12
genetically encoded
12
encoded biosensors
12
flavonoids
9
biotechnological production
8
production flavonoids
8
engineering microbial
8
plant
6

Similar Publications

Magnesium (Mg) an essential plant nutrient is widespread deficient in the acidic soils of Nilgiris of Tamil nadu, India. The vegetable yield and quality is especially affected due to deficiency of nutrients like Mg. This study investigates soil characteristics and bacterial diversity in the Nilgiris district of Tamil Nadu, India, with respect to Mg deficiency.

View Article and Find Full Text PDF

Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.

View Article and Find Full Text PDF

Cannabidiol (CBD), a specialized metabolite (phytocannabinoid) abundant in Cannabis sativa, is attracting increasing attention for its alleged health-promoting properties. The present study aimed to investigate the pharmacokinetics of CBD and its primary metabolite, 7-hydroxy-cannabidiol (7-OH-CBD), following a single oral dose of a CBD-rich Cannabis sativa extract, equivalent to 70 mg CBD, in healthy male (n=5) and female (n=6) participants. Using a randomized crossover design, the study evaluated the impact of a standardized high-fat meal compared to fasting on the oral bioavailability of CBD.

View Article and Find Full Text PDF

Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants.

View Article and Find Full Text PDF

Convergent evidence for the temperature-dependent emergence of silicification in terrestrial plants.

Nat Commun

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Research on silicon (Si) biogeochemistry and its beneficial effects for plants has received significant attention over several decades, but the reasons for the emergence of high-Si plants remain unclear. Here, we combine experimentation, field studies and analysis of existing databases to test the role of temperature on the expression and emergence of silicification in terrestrial plants. We first show that Si is beneficial for rice under high temperature (40 °C), but harmful under low temperature (0 °C), whilst a 2 °C increase results in a 37% increase in leaf Si concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!