2D PC as a promising thermoelectric material.

Phys Chem Chem Phys

Materials and Biophysics Group, Department of Applied Physics, S. V. National Institute of Technology, Surat 395007, India. and Hanse-Wissenschaftskolleg (HWK), Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany.

Published: April 2020

In the present article, we report the thermoelectric properties of monolayer PC3 for the first time. The structural, vibrational, electronic and thermoelectric properties of PC3 are investigated in detail using a combination of density functional and Boltzman transport theory, and are compared to the carbon (graphene) and phosphorous (phosphorene) analogues. The results show that the PC3 monolayer is dynamically stable and robust upon oxygen contact as well. Also, PC3 is found to be an indirect band gap semiconductor in comparison to the zero gap carbon (graphene) and direct gap phosphorous (phosphorene) analogues. The effect of axial strains is also investigated on the electronic and thermoelectric properties of PC3. The present work reveals monolayer PC3 to be an excellent thermoelectric material with significant thermoelectric performance (ZT ∼ 1) for a large scale operating temperature range of 200-1200 K.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp00527dDOI Listing

Publication Analysis

Top Keywords

thermoelectric properties
12
thermoelectric material
8
monolayer pc3
8
electronic thermoelectric
8
properties pc3
8
carbon graphene
8
phosphorous phosphorene
8
phosphorene analogues
8
pc3
6
thermoelectric
5

Similar Publications

The MgSb-based layered compounds exhibit exceptional thermoelectric properties over a wide temperature range and possess the potential to supplant traditional BiTe modules with reliable and economical MgSb-based thermoelectric devices, contingent upon the availability of a complementary p-type MgSb material with high thermoelectric efficiency comparable to that of n-type MgSb. We provide a simpler method involving the codoping of monovalent atoms (K and Na) at the Mg site of the MgSb lattice to improve the thermoelectric performance of p-type MgSb. K-Na codoping results in a peak power factor of around 0.

View Article and Find Full Text PDF

A semi-automated workflow relying on atomic-scale modelling is introduced to explore and understand the yet-unsolved structure of the crystalline AsTe material, recently obtained from crystallization of the parent AsTe glass, which shows promising properties for thermoelectric applications. The seemingly complex crystal structure of AsTe is investigated with density functional theory, from the stand point of As/Te disorder, in a structural template derived from elemental-Te (Te), following experimental findings from combined X-ray total scattering and diffraction. Our workflow includes a combinatorial structure generation step followed by successive structure selection and relaxation steps with progressively-increasing accuracy levels and a multi-criterion evaluation procedure.

View Article and Find Full Text PDF

Impact of Boron Nitride on the Thermoelectric Properties and Service Stability of CuSe.

ACS Appl Mater Interfaces

January 2025

Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China.

Improving the thermoelectric performance and service stability is essential for the effective use of cuprous selenide (CuSe). In this study, hexagonal boron nitride (h-BN) was incorporated into nano-CuSe, with the goal of enhancing thermoelectric performance and service stability. It was found that CuSe-0.

View Article and Find Full Text PDF

This study investigates a comprehensive enhancement strategy for photovoltaic (PV) panel efficiency, focusing on increasing electrical output through the integration of parabolic reflectors, advanced cooling mechanisms, and thermoelectric generation. Parabolic reflectors are implemented in the system to maximize solar irradiance on the PV panel's surface, while a specialized cooling system is introduced to regulate temperature distribution across the silicon layer. This cooling system consists of a finned duct filled with paraffin (RT35HC) and enhanced with SWCNT nanoparticles, which improve the thermal properties of the paraffin, facilitating more effective heat dissipation.

View Article and Find Full Text PDF

We introduce our proprietary Materials Informatics (MI) technologies and our chemistry-oriented methodology for exploring new inorganic functional materials. Using machine learning on crystal structure databases, we developed 'Element Reactivity Maps' that displays the presence or the predicted formation probability of compounds for combinations of 80 × 80 × 80 elements. By analysing atomic coordinates with Delaunay tetrahedral decomposition, we established the concept of Delaunay Chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!