Complete genome sequence of a mite-associated virus obtained by high-throughput sequencing analysis of an apple leaf sample.

Arch Virol

Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Academy of Sciences of the Czech Republic, V.V.I., Branišovská 31, 370 05, České Budějovice, Czech Republic.

Published: June 2020

We provide the complete sequence of a virus tentatively named "Tetranychus urticae-associated picorna-like virus 1PK13" (TuaPV1-PK13) obtained from the high-throughput sequencing of a symptomless apple leaf sample. Although the virus sequence was originally derived from apple leaves, the data suggest that the virus is associated with the two-spotted mite Tetranychus urticae.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-020-04620-8DOI Listing

Publication Analysis

Top Keywords

high-throughput sequencing
8
apple leaf
8
leaf sample
8
virus
5
complete genome
4
genome sequence
4
sequence mite-associated
4
mite-associated virus
4
virus high-throughput
4
sequencing analysis
4

Similar Publications

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

The fish intestine is a complex ecosystem where microbial communities are dynamic and influenced by various factors. Preservation conditions during field collection can introduce biases affecting the microbiota amplified during sequencing. Therefore, establishing effective, standardized methods for sampling fish intestinal microbiota is crucial.

View Article and Find Full Text PDF

Sequence-Dependent Slowdown of DNA Translocation Using Transmembrane RNA-DNA Interactions in MoS Nanopore.

J Phys Chem B

January 2025

Institute of Quantitative Biology, College of Life Sciences, and School of Physics, Zhejiang University, Hangzhou, Zhejiang 310058, China.

The emergence of nanopores in two-dimensional (2D) nanomaterials offers an attractive solid-state platform for high-throughput and low-cost DNA sequencing. However, several challenges remain to be addressed before their wide application, including the too-fast DNA translocation speed (compared to state-of-the-art single nucleoside detection techniques) and too large noise/signal ratios due to DNA fluctuations inside the nanopores. Here, we use molecular dynamics (MD) simulations to demonstrate the feasibility of utilizing RNA-DNA interactions in modulating DNA translocations in 2D MoS nanopores.

View Article and Find Full Text PDF

This study aim is to elucidate the relationship between the microbial community dynamics and the production of volatile flavor compounds during the fermentation process of bacterial-type i. Using high-throughput sequencing (HTS) and headspace solid-phase microextraction, gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to investigate microbial diversity and volatile compound profiles at different fermentation stages. Spearman correlation analysis was employed to identify potential associations between microbial genera and flavor compounds.

View Article and Find Full Text PDF

BackgroundAllergic diseases have become one of the major public health problems to be addressed in the world today. As a tissue resident cell, mast cells are crucial in the pathogenesis of allergic diseases. Vitamin A is an important fat-soluble vitamin with immunomodulatory functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!