Echinococcosis is a serious helminthic zoonosis with a great impact on human health and livestock husbandry. However, the clinically used drugs (benzimidazoles) have a low cure rate, so alternative drugs are urgently needed. Currently, drug screenings for echinococcosis are mainly phenotype-based, and the efficiency of identifying active compounds is very low. With a pharmacophore model generated from the structures of active amino alcohols, we performed a virtual screening to discover novel compounds with anti-echinococcal activity. Sixty-two compounds from the virtual screening were tested on protoscoleces, and 10 of these compounds were found to be active. After further evaluation of their cytotoxicity, S6 was selected along with two active amino alcohols for pharmacodynamic and pharmacokinetic studies. At the two tested doses (50 and 25 mg/kg), S6 inhibited the growth of in mice (14.43 and 9.53%), but no significant difference between the treatment groups and control group was observed. Treatment with BTB4 and HT3 was shown to be ineffective. During the 28 days of treatment, the death of mice in the mebendazole, HT3, and BTB4 groups indicated their toxicity. The plasma concentration of S6 administered by both methods was very low, with the C being only 1 ng/ml after oral administration and below the detection limit after intramuscular administration. In addition, the plasma concentrations of BTB4 and HT3 did not reach high enough levels to kill the parasites. The toxicities of these two amino alcohols indicated that they are not suitable for further development as anti-echinococcal drugs. However, further attempts should be made to increase the bioavailability of S6 and modify its structure. In this study, we demonstrate that pharmacophore-based virtual screenings with high drug identification efficiency could be used to find novel drugs for treating echinococcosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098963 | PMC |
http://dx.doi.org/10.3389/fcimb.2020.00118 | DOI Listing |
Cardiooncology
January 2025
Dept of Oncology Tier 2 Canada Research Chair, University of Alberta, Alberta, Canada.
Background: With early detection and improvements in systemic and local therapies, millions of people are surviving cancer, but for some at a high cost. In some cancer types, cardiovascular disease now competes with recurrent cancer as the cause of death. Traditional care models, in which the cardiologist or oncologist assess patients individually, do not address complex cancer and cardiovascular needs.
View Article and Find Full Text PDFBMC Med Educ
January 2025
First Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, Kunming, 650032, China.
Background: With the continuous development of educational methods, desktop virtual reality technology has gradually attracted widespread attention. Although current research has shown that this technology can promote learning among nursing students, the mechanism and intrinsic factors are not yet clear. This study aims to explore the mechanisms and factors of the application of desktop virtual reality technology in nursing students' education and discuss the possible outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiology, University of Galway, University Road, Galway, H91 TK33, Ireland.
Diffuse coronary artery disease (CAD) impacts the immediate hemodynamic and clinical outcomes of percutaneous coronary intervention (PCI). We evaluated whether the diffuse pattern of CAD derived from angiographic Quantitative flow ratio (QFR) impacts the immediate hemodynamic outcome post-PCI and the medium term predicted vessel-oriented composite endpoint (VOCE). Paired pre-procedure QFRs were assessed in 503 patients and 1022 vessels in the Multivessel TALENT (MVT) trial.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Computer and AI, Cairo University, Giza, Egypt.
Drug discovery and development is a challenging and time-consuming process. Laboratory experiments conducted on Vidarabine showed IC 6.97 µg∕mL, 25.
View Article and Find Full Text PDFNat Commun
January 2025
Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Accurate melanoma diagnosis is crucial for patient outcomes and reliability of AI diagnostic tools. We assess interrater variability among eight expert pathologists reviewing histopathological images and clinical metadata of 792 melanoma-suspicious lesions prospectively collected at eight German hospitals. Moreover, we provide access to the largest panel-validated dataset featuring dermoscopic and histopathological images with metadata.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!