Whole Genome Sequencing and Characteristics of -1-Harboring Plasmids of Porcine Isolates Belonging to the High-Risk Clone O25b:H4-ST131 Clade B.

Front Microbiol

Laboratorio de Referencia de E. coli (LREC), Departamento de Microbiología y Parasitología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.

Published: March 2020

Porcine ST131 isolates are scarcely documented. Here, whole genome sequencing and core genome (CG) and plasmidome analysis of seven isolates collected from diarrheic piglets and four from pork meat were performed. All of the 11 ST131 isolates belonged to serotype O25b:H4 and clade B and showed 22 allele or mutational derivatives. The 11 porcine isolates possessed virulence traits that classified the isolates as avian pathogenic, uropathogenic, and extraintestinal pathogenic -like (APEC-, UPEC-, and ExPEC-like) and constituted virotype D. The CG was performed for all porcine isolates in addition to 73 ST131 reference isolates from different origins. Within clade B, the CG showed nine subclusters, allowing us to describe five new subclades (B6, B6-like, B7, B8, and B9). There was an association between subclade B6, PST43, virotype D2, and food origin, whereas subclade B7 included PST9 isolates with virotype D5 from diarrheic piglets ( = 0.007). The distance between human and porcine isolates from subclades B6 and B7 had an average of 20 and 15 SNP/Mb, respectively. [F2:A-:B1]-IncF, ColE1-like, and IncX plasmids were the most prevalent. Besides, IncF plasmids harbored a ColV region frequent among APEC isolates. Antimicrobial resistance genes conferring resistance to penicillin, tetracycline, quinolones, and colistin were the most common. The -1.1 gene was detected in 5 of 11 porcine isolates, integrated into the chromosome of one isolate and into plasmids in the remainder isolates (two MOB /IncHI2-ST4, one MOB /IncX4, and one MOB /IncF [F2:A-:B1] supposedly cointegrated with an IncHI2). The surrounding environments of the -1 cassette showed variability. However, there were conserved structures within the same plasmid family. In conclusion, CG analysis defined five new subclades. The ST131 porcine isolates belonged to new subclades B6 and B7. Moreover, porcine and clinical human isolates were strongly related. The 11 porcine ST131 isolates harbored a wide variety of plasmids, virulence, and resistance genes. Furthermore, epidemic plasmids IncX4 and IncHI2 are responsible for the acquisition of -1.1 gene. We hypothesize that the APEC-IncF plasmid acquired the -1.1 gene via cointegrating an IncHI2 plasmid, which is worrying due to combination of virulence and resistance attributes in a single mobile genetic element.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105644PMC
http://dx.doi.org/10.3389/fmicb.2020.00387DOI Listing

Publication Analysis

Top Keywords

porcine isolates
24
isolates
16
st131 isolates
12
-11 gene
12
porcine
9
genome sequencing
8
porcine st131
8
diarrheic piglets
8
isolates belonged
8
resistance genes
8

Similar Publications

Swine influenza virus (SIV) is a highly contagious pathogen that poses significant economic challenges to the swine industry and carries zoonotic potential, underscoring the need for vigilant surveillance. In this study, we performed a comprehensive genetic and molecular analysis of H3N2 SIV isolates obtained from 372 swine samples collected in Shandong Province, China. Phylogenetic analysis revealed two distinct genotypes.

View Article and Find Full Text PDF

is an important bacterial pathogen implicated in infections such as mastitis, metritis, pneumonia, and liver abscesses in both domestic and wild animals, as well as endocarditis and prosthetic joint infections in humans. Understanding the genomic and metabolic features that enable to colonize different anatomical sites within a host and its inter-kingdom transmission and survival is important for the effective control of this pathogen. We employed whole-genome sequencing, phenotype microarrays, and antimicrobial susceptibility testing to identify genomic, metabolic and phenotypic features, and antimicrobial resistance (AMR) genes in recovered from different livestock, companion, and wildlife animals.

View Article and Find Full Text PDF

Comparison of nasal swabs and handmade foam cubes for detecting equine herpesvirus 5 (EHV-5) by quantitative polymerase chain reaction (qPCR).

Can J Vet Res

January 2025

Department of Clinical Sciences (Charbonnel, Lavoie, Leclère), Molecular Diagnostic Laboratory, Centre de diagnostic vétérinaire de l'Université de Montréal (CDVUM) (Grenier St-Sauveur, Gagnon), Swine and Poultry Infectious Diseases Research Centre (CRIPA-FRQNT) (Gagnon), Faculté de Médecine Vétérinaire (Juette), Université de Montréal, 3200 rue Sicotte Saint-Hyacinthe, Québec J2S 2M2; Serge Denis BBA, DVM - Animal Health Consultant Inc. (Denis), Montréal, Québec.

The control of equine respiratory infections is a biosecurity challenge. Respiratory viruses are often rapidly detected using quantitative polymerase chain reaction (qPCR) on nasal swabs. In the past, some laboratories developed handmade techniques to increase the amount of nasal secretions collected, without comparing them with nasal swabs when qPCR replaced the use of viral culture.

View Article and Find Full Text PDF

Enhanced Insulin Production From Porcine Islets: More Insulin, Less Islets.

Transpl Int

January 2025

Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium.

Clinical pancreatic islet xenotransplantation will most probably rely on genetically modified pigs as donors. Several lines of transgenic pigs carrying one and more often, multiple modifications already exist. The vast majority of these modifications aim to mitigate the host immune response by suppressing major xeno-antigens, or expressing immunomodulatory molecules that act locally at the graft site.

View Article and Find Full Text PDF

Effect of extracellular vesicles derived from oviductal and uterine fluid on the development of porcine preimplantation embryos.

Theriogenology

December 2024

College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

To improve the efficiency of in-vitro-produced (IVP) porcine embryos, we focused on the events that usually occur during in-vivo embryonic transit from the oviduct to the uterus. Extracellular vesicles (EVs) are released by different mammalian cells and are imperative for intercellular communication and reflect the cell's physiological state. Based on these characteristics, EVs were isolated from oviductal and uterine fluid to imitate the in vivo environment and improve the efficiency of IVP embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!