Super-resolution ultrasound localization microscopy (ULM), based on localization and tracking of individual microbubbles (MBs), offers unprecedented microvascular imaging resolution at clinically relevant penetration depths. However, ULM is currently limited by the requirement of dilute MB concentrations to ensure spatially sparse MB events for accurate localization and tracking. The corresponding long imaging acquisition times (tens of seconds or several minutes) to accumulate sufficient isolated MB events for full reconstruction of microvasculature preclude the clinical translation of the technique. To break this fundamental tradeoff between acquisition time and MB concentration, in this paper we propose to separate spatially overlapping MB events into sub-populations, each with sparser MB concentration, based on spatiotemporal differences in the flow dynamics (flow speeds and directions). MB localization and tracking are performed for each sub-population separately, permitting more robust ULM imaging of high-concentration MB injections. The superiority of the proposed MB separation technique over conventional ULM processing is demonstrated in flow channel phantom data, and in the chorioallantoic membrane of chicken embryos with optical imaging as an in vivo reference standard. Substantial improvement of ULM is further demonstrated on a chicken embryo tumor xenograft model and a chicken brain, showing both morphological and functional microvasculature details at super-resolution within a short acquisition time (several seconds). The proposed technique allows more robust MB localization and tracking at relatively high MB concentrations, alleviating the need for dilute MB injections, and thereby shortening the acquisition time of ULM imaging and showing great potential for clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138805 | PMC |
http://dx.doi.org/10.1038/s41598-020-62898-9 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China.
Purpose: Ocular neovascularization is a major cause of blindness. Although fibroblast growth factor-2 (FGF2) has been implicated in the pathophysiology of angiogenesis, the underlying mechanisms remain incompletely understood. The purpose of this study was to investigate the role of FGF2 in retinal neovascularization and elucidate its underlying mechanisms.
View Article and Find Full Text PDFInfancy
January 2025
Language and Linguistic Science Department, University of York, York, UK.
Current research indicates likely developmental connections between the evolution of sleep patterns, motor skills progression, and the expansion of vocabulary. These connections are grounded in the well-established role of sleep in memory and learning, as well as in the cascading effects on language development of the acquisition of new motor skills. However, no study has so far undertaken a comprehensive and systematic examination of these connections or explored their developmental trajectory over time.
View Article and Find Full Text PDFPediatr Radiol
January 2025
Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
Background: Motion correction methods based on slice-to-volume registration (SVR) for fetal magnetic resonance imaging (MRI) allow reconstruction of three-dimensional (3-D) isotropic images of the fetal brain and body. However, all existing SVR methods are confined to research settings, which limits clinical integration. Furthermore, there have been no reported SVR solutions for low-field 0.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Omics Technologies, Cellzome a GSK company, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
Data-independent acquisition (DIA) on ion mobility mass spectrometers enables deep proteome coverage and high data completeness in large-scale proteomics studies. For advanced acquisition schemes such as parallel accumulation serial fragmentation-based DIA (diaPASEF) stability of ion mobility (1/K) over time is crucial for consistent data quality. We found that minor changes in environmental air pressure systematically affect the vacuum pressure in the TIMS analyzer, causing ion mobility shifts.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
Periodic mycelial subculture is a method commonly used for the storage of edible mushrooms, but excessive subculturing can lead to the degeneration of strains. In this study, the strain V971(M0) was successively subcultured on PDA medium every 4 days, and one generation of strains was preserved every 4 months. Thus, five generations of subcultured strains (M1-M5) were obtained after 20 months of mycelial subculturing, their production traits were determined, and transcriptomic analysis was performed using RNA-seq; the differentially expressed genes were verified via RT-qPCR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!