Stressed cells downregulate translation initiation and assemble membrane-less foci termed stress granules (SGs). Although SGs have been extensively characterized in cultured cells, the existence of such structures in stressed adult stem cell pools remains poorly characterized. Here, we report that the orthologs of the mammalian SG components AGO1, ATX2, CAPRIN, eIF4E, FMRP, G3BP, LIN-28, PABP and TIAR are enriched in adult fly intestinal progenitor cells, where they accumulate in small cytoplasmic messenger ribonucleoprotein complexes (mRNPs). Treatment with sodium arsenite or rapamycin reorganized these mRNPs into large cytoplasmic granules. Formation of these intestinal progenitor stress granules (IPSGs) depended on polysome disassembly, led to translational downregulation and was reversible. Although the canonical SG nucleators ATX2 and G3BP were sufficient for IPSG formation in the absence of stress, neither of them, nor TIAR, either individually or collectively, were required for stress-induced IPSG formation. This work therefore finds that IPSGs do not assemble via a canonical mechanism, raising the possibility that other stem cell populations employ a similar stress-response mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7325430 | PMC |
http://dx.doi.org/10.1242/jcs.243451 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemical Engineering, IIT Gandhinagar, Gandhinagar, Gujarat 382055, India.
We compare the structures of polymer globules, composed of flexible polymer chains, with liquid droplets made of nonbonded monomers of the same polymer in poor solvents. This comparison is performed in three different poor solvents, with and without the addition of cosolvents. Molecular dynamics simulations are used to analyze the properties of the polymer globules, while semigrand canonical Monte Carlo simulations are used to form metastable liquid droplets of nonbonded monomers through homogeneous nucleation in the same solvents.
View Article and Find Full Text PDFCell Rep
December 2024
Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Ecole Normale Supérieure, PSL Research University, Paris, France. Electronic address:
Multiciliated cells (MCCs) ensure fluid circulation in various organs. Their differentiation is marked by the amplification of cilia-nucleating centrioles, driven by a genuine cell-cycle variant, which is characterized by wave-like expression of canonical and non-canonical cyclins such as Cyclin O (CCNO). Patients with CCNO mutations exhibit a subtype of primary ciliary dyskinesia called reduced generation of motile cilia (RGMC).
View Article and Find Full Text PDFbioRxiv
November 2024
Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, Lyon, France.
MicroRNAs-direct Argonaute proteins to repress complementary target mRNAs via mRNA degradation or translational inhibition. While mammalian miRNA targeting has been well studied, the principles by which miRNAs bind their target RNAs remain to be fully characterized. Here, we use RNA Bind-n-Seq to systematically identify binding sites and measure their affinities for four highly expressed miRNAs.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States.
J Chem Phys
November 2024
Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584CC Utrecht, The Netherlands.
In the study of crystal nucleation via computer simulations, hard spheres are arguably the most extensively explored model system. Nonetheless, even in this simple model system, the complex thermodynamics of crystal nuclei can sometimes give rise to counterintuitive results, such as the recent observation that the pressure inside a critical nucleus is lower than that of the surrounding fluid, seemingly clashing with the strictly positive Young-Laplace pressure we would expect in liquid droplets. Here, we re-derive many of the founding equations associated with crystal nucleation and use the hard-sphere model to demonstrate how they give rise to this negative pressure difference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!