Background: To promote understanding of the pathogenesis of cognitive impairment or dementia, we explored the potential interaction between transient cerebral ischemia and amyloid-β (Aβ) infusion in mediating cognitive decline and examined the possible ameliorative effect of angiotensin II type 2 (AT) receptor activation in vascular smooth muscle cells (VSMC) on this cognitive deficit.
Methods: Adult male wild-type mice (WT) and mice with VSMC-specific AT receptor overexpression (smAT) were subjected to intracerebroventricular (ICV) injection of Aβ1-40. Transient cerebral ischemia was induced by 15 min of bilateral common carotid artery occlusion (BCCAO) 24 h after Aβ injection.
Results: Aβ injection in WT induced a cognitive decline, whereas BCCAO did not cause a significant cognitive deficit. In contrast, WT with BCCAO following Aβ injection exhibited more marked cognitive decline compared to Aβ injection alone, in concert with increases in superoxide anion production, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and expression of p22phox, p40phox, monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-1β in the hippocampus, and upregulation of RAGE (receptor for advanced glycation end product), an Aβ transporter. BCCAO following Aβ injection further enhanced neuronal pyknosis in the hippocampus, compared with BCCAO or Aβ injection alone. In contrast, smAT did not show a cognitive decline, increase in oxidative stress, inflammation, and RAGE level or neuronal pyknosis, which were induced by BCCAO with/without Aβ injection in WT.
Conclusions: Transient cerebral ischemia might worsen Aβ infusion-mediated cognitive decline and vice versa, with possible involvement of amplified oxidative stress and inflammation and impairment of the RAGE-mediated Aβ clearance system, contributing to exaggerated neuronal degeneration. AT receptor activation in VSMC could play an inhibitory role in this cognitive deficit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140348 | PMC |
http://dx.doi.org/10.1186/s12974-020-01775-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!