Background: HDAC inhibitors (HDACi) belong to a new group of chemotherapeutics that are increasingly used in the treatment of lymphocyte-derived malignancies, but their mechanisms of action remain poorly understood. Here we aimed to identify novel protein targets of HDACi in B- and T-lymphoma cell lines and to verify selected candidates across several mammalian cell lines.
Methods: Jurkat T- and SUDHL5 B-lymphocytes were treated with the HDACi SAHA (vorinostat) prior to SILAC-based quantitative proteome analysis. Selected differentially expressed proteins were verified by targeted mass spectrometry, RT-PCR and western analysis in multiple mammalian cell lines. Genomic uracil was quantified by LC-MS/MS, cell cycle distribution analyzed by flow cytometry and class switch recombination monitored by FACS in murine CH12F3 cells.
Results: SAHA treatment resulted in differential expression of 125 and 89 proteins in Jurkat and SUDHL5, respectively, of which 19 were commonly affected. Among these were several oncoproteins and tumor suppressors previously not reported to be affected by HDACi. Several key enzymes determining the cellular dUTP/dTTP ratio were downregulated and in both cell lines we found robust depletion of UNG2, the major glycosylase in genomic uracil sanitation. UNG2 depletion was accompanied by hyperacetylation and mediated by increased proteasomal degradation independent of cell cycle stage. UNG2 degradation appeared to be ubiquitous and was observed across several mammalian cell lines of different origin and with several HDACis. Loss of UNG2 was accompanied by 30-40% increase in genomic uracil in freely cycling HEK cells and reduced immunoglobulin class-switch recombination in murine CH12F3 cells.
Conclusion: We describe several oncoproteins and tumor suppressors previously not reported to be affected by HDACi in previous transcriptome analyses, underscoring the importance of proteome analysis to identify cellular effectors of HDACi treatment. The apparently ubiquitous depletion of UNG2 and PCLAF establishes DNA base excision repair and translesion synthesis as novel pathways affected by HDACi treatment. Dysregulated genomic uracil homeostasis may aid interpretation of HDACi effects in cancer cells and further advance studies on this class of inhibitors in the treatment of APOBEC-expressing tumors, autoimmune disease and HIV-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137348 | PMC |
http://dx.doi.org/10.1186/s12967-020-02318-8 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chengdu Medical College, Nuclear Industry 416 Hospital, Chengdu, Sichuan, China.
Hypertension (HT) is a prevalent medical condition showing an increasing incidence rate in various populations over recent years. Long-term hypertension increases the risk of the occurrence of hypertensive nephropathy (HTN), which is also a health-threatening disorder. Given that very little is known about the pathogenesis of HTN, this study was designed to identify disease biomarkers, which enable early diagnosis of the disease, through the utilization of high-throughput untargeted metabolomics strategies.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Environmental Science and Engineering, Yangzhou University, China. Electronic address:
Base deamination can lead to DNA base damage, among which cytosine deamination to uracil occurs frequently. Before repair, replication of uracil in DNA will generate GC → AT transversion mutation. Since base deamination is accelerated by high temperature, genomic DNA stability of hyperthermophiles, which grow optimally above 75 °C, is facing a severe threat by the elevated base deamination created by their living high temperature environments.
View Article and Find Full Text PDFInt J Colorectal Dis
January 2025
Internal Medicine, Jilin Cancer Hospital, Changchun, China.
Purpose: This phase II study is designed to evaluate the combination therapy involving suvemcitug and envafolimab with FOLFIRI in microsatellite-stable or mismatch repair-proficient (MSS/pMMR) colorectal cancer (CRC) in the second-line treatment setting.
Methods: This study is a non-randomized, open-label prospective study comprising multiple cohorts (NCT05148195). Here, we only report the data from the CRC cohort.
Sci Rep
January 2025
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491, Trondheim, Norway.
The cytotoxic mechanisms of thymidylate synthase inhibitors, such as the multitarget antifolate pemetrexed, are not yet fully understood. Emerging evidence indicates that combining pemetrexed with histone deacetylase inhibitors (HDACi) may enhance therapeutic efficacy in non-small cell lung cancer (NSCLC). To explore this further, A549 NSCLC cells were treated with various combinations of pemetrexed and the HDACi MS275 (Entinostat), and subsequently assessed for cell viability, cell cycle changes, and genotoxic markers.
View Article and Find Full Text PDFJ Gastrointest Cancer
January 2025
Department of Gastrointestinal Medical Oncology, Oncoclínicas, Florianópolis, SC, Brazil.
Purpose: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with poor response to chemotherapy. High-frequency microsatellite instability (MSI-H) is a rare biological phenomenon in conventional PDAC, being more frequently described in tumors with medullary or mucinous features.
Methods And Results: In this manuscript, we report the case of a patient with an MSI-H pancreatic carcinoma with medullary features (medullary carcinoma of the pancreas-MCP) that achieved a complete pathological response after neoadjuvant modified FOLFIRINOX.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!