Herbaceous peony ( Pall.) is known as the flower phase. This phase is somewhat resistant to drought, but long-term drought and severe water shortage will affect its normal growth and development. In this study, physiological indices and the transcriptome of were determined to clarify its physiological responses and gene expression changes under drought stress. The results showed that under drought stress, soluble sugar content, peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities, and chlorophyll, carotenoid and flavonoid contents were significantly increased, and soluble protein content, superoxide dismutase (SOD), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), ascorbic acid (AsA) and glutathione (GSH) activity first increased and then decreased after day 14. Moreover, drought stress also significantly reduced chlorophyll content, photosynthesis and chlorophyll fluorescence parameters. Transcriptomic analysis revealed that compared with the Control, 10,747 differentially expressed genes (DEGs) were upregulated and 11,835 downregulated under drought stress. These DEGs were classified into three categories and 46 functional groups by GO function classification. The 3,179 DEGs were enriched into 128 pathways by KEGG pathway enrichment. The ROS system, chlorophyll degradation and photosynthetic capacity, as well as secondary pathways of biosynthesis and sugar metabolism were included. Additionally, relevant genes expressed in some metabolic pathways were discovered. These results provide a theoretical basis for understanding the responses of to drought stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7238884 | PMC |
http://dx.doi.org/10.1080/15592324.2020.1746034 | DOI Listing |
Adv Biotechnol (Singap)
September 2024
School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
Sorghum, the fifth most important crop globally, thrives in challenging environments such as arid, saline-alkaline, and infertile regions. This remarkable crop, one of the earliest crops domesticated by humans, offers high biomass and stress-specific properties that render it suitable for a variety of uses including food, feed, bioenergy, and biomaterials. What's truly exciting is the extensive phenotypic variation in sorghum, particularly in traits related to growth, development, and stress resistance.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2023
Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agro-Biotechnology, Chinese University of Hong Kong, Hong Kong, 999077, China.
Water-saving irrigation techniques play a crucial role in addressing water scarcity challenges and promoting sustainable agriculture. However, the selection of appropriate water-saving irrigation methods remains a challenge in agricultural production. Additionally, the molecular regulatory mechanisms of crops under water-saving irrigation are not yet clear.
View Article and Find Full Text PDFBackground: Plant senescence is a genetically controlled process that results in the programmed death of plant cells, organs, or the entire plant. This process is essential for nutrient recycling and supports the production of plant offspring. Environmental stresses such as drought and heat can hasten senescence, reducing photosynthetic efficiency and significantly affecting crop quality and yield.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Civil Engineering, Payame Noor University, Tehran, Iran.
Drought represents one of the most devastating natural hazards, significantly impacting economies, societies, and the environment. Climate change is expected to alter future drought characteristics and may increase the severity of droughts. To mitigate these effects, it is essential to identify the characteristics of future droughts influenced by climate change using appropriate methods.
View Article and Find Full Text PDFOpen Life Sci
January 2025
Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, China.
Drought is a major abiotic stress in restricting the growth, development, and yield of maize. As a significant epigenetic regulator, small RNA also functions in connecting the transcriptional and post-transcriptional regulatory network. Further to help comprehending the molecular mechanisms underlying drought adaptability and tolerance of maize, an integrated multi-omics analysis of transcriptome, sRNAome, and degradome was performed on the seedling roots of an elite hybrid Zhengdan958 under drought stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!