Recent studies have demonstrated an important role of the pro-inflammatory cytokine interferon-γ in neuropathic pain. Interferon-γ is upregulated in the lumbar spinal cord of nerve-injured rodents and intrathecal injection of interferon-γ has been shown to induce neuropathic pain-like behaviours in naive rodents. A potential mechanism in the pathogenesis of neuropathic pain is a long-lasting amplification of nociceptive synaptic transmission in lamina I of the spinal dorsal horn. Here, we tested the effects of interferon-γ on the properties of the first synapse in nociceptive pathways in the superficial spinal dorsal horn. We performed whole-cell patch-clamp recordings in lamina I neurons in a spinal cord slice preparation with dorsal roots attached from young rats. We determined the effects of acute (at least 25 min) or longer lasting (4–8 h) treatment of the transversal slices with recombinant rat interferon-γ on spontaneous excitatory postsynaptic currents or on monosynaptic Aδ- and C-fibre-evoked excitatory postsynaptic currents, respectively. Prolonged treatment with interferon-γ facilitated monosynaptic C-fibre-evoked excitatory postsynaptic currents and this effect could be blocked by co-application of minocycline an inhibitor of microglial activation. In contrast, Aδ-fibre-evoked excitatory postsynaptic currents were not affected by the prolonged interferon-γ treatment. Acute interferon-γ application in the bathing solution did not change strength of monosynaptic Aδ- or C-fibre synapses in lamina I. However, the rate, but not the amplitude, of spontaneous excitatory postsynaptic currents recorded in lamina I neurons was decreased. This effect could not be blocked by the application of minocycline. Long-lasting treatment of rat spinal cord slices with interferon-γ induced an input specific facilitation of synaptic strength in spinal nociceptive pathways. Enhanced transmission between C-fibres and spinal lamina I neurons was mediated by the activation of microglial cells. We showed that the pro-inflammatory cytokine interferon-γ modifies the processing of information at the first synaptic relay station in nociceptive pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144669 | PMC |
http://dx.doi.org/10.1177/1744806920917249 | DOI Listing |
Biogerontology
January 2025
Department of Anatomy, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhongyang Rd., Hualien, 970374, Taiwan.
Aging women experience a significant decline of ovarian hormones, particularly estrogen, following menopause, and become susceptible to cognitive and psychomotor deficits. Although the effects of estrogen depletion had been documented in the prefrontal and somatosensory cortices, its impact on somatomotor cortex, a region crucial for motor and cognitive functions, remains unclear. To explore this, we ovariectomized young adult female rats and fed subsequently with phytoestrogen-free diet and studied the effects of estrogen depletion on the somato-sensory and motor cortices.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Brain neural networks intricately integrate excitatory and inhibitory synaptic potentials to modulate the generation or suppression of action potentials, laying the foundation for neuronal computation. Although bioinspired nanofluidic systems have replicated some synaptic functions, complete integration of postsynaptic potentials remains unachieved. In this work, the developed ion concentration gradient nanofluidic memristor (ICGNM) modulates memristive effects through ion concentration gradient adjustments and exhibits synaptic plasticity phenomena, including paired-pulse facilitation, paired-pulse depression, and spike-rate-dependent plasticity.
View Article and Find Full Text PDFNeuroscience
January 2025
Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, China; National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, China; College of Life Science, Shaanxi Normal University, Xi'an, China. Electronic address:
Several studies indicate that fructose can be used as an energy source for subterranean rodents. However, how subterranean rodents utilize fructose metabolism with no apparent physiological drawbacks remains poorly understood. In the present study, we measured field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from Gansu zokor and SD rats hippocampi before and 60 min after replacement of 10 mM glucose in the artificial cerebrospinal fluid (ACSF) with 10 mM fructose (gassed with 95 % O and 5 % CO).
View Article and Find Full Text PDFScience
January 2025
Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
Synapses are organized by trans-synaptic adhesion molecules that coordinate assembly of pre- and postsynaptic specializations, which, in turn, are composed of scaffolding proteins forming liquid-liquid phase-separated condensates. Presynaptic teneurins mediate excitatory synapse organization by binding to postsynaptic latrophilins; however, the mechanism of action of teneurins, driven by extracellular domains evolutionarily derived from bacterial toxins, remains unclear. In this work, we show that only the intracellular sequence, a dimerization sequence, and extracellular bacterial toxin-derived latrophilin-binding domains of Teneurin-3 are required for synapse organization, suggesting that teneurin-induced latrophilin clustering mediates synaptogenesis.
View Article and Find Full Text PDFIn a genome-wide association study (GWAS) meta-analysis of 688,808 individuals with major depression (MD) and 4,364,225 controls from 29 countries across diverse and admixed ancestries, we identify 697 associations at 635 loci, 293 of which are novel. Using fine-mapping and functional tools, we find 308 high-confidence gene associations and enrichment of postsynaptic density and receptor clustering. A neural cell-type enrichment analysis utilizing single-cell data implicates excitatory, inhibitory, and medium spiny neurons and the involvement of amygdala neurons in both mouse and human single-cell analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!