Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polydopamine (PDA) is well-known as the first material-independent adhesive, which firmly attaches to various substances, even hydrophobic materials, through strong coordinative interactions between the phenolic hydroxyl groups of PDA and the substances. In contrast, oil-infused materials such as self-lubricating gels (SLUGs) exhibit excellent antiadhesive properties against viscous liquids, ice/snow, (bio)fouling, and so on. In this study, we simply questioned: "What will happen when these two materials with contrary nature meet"? To answer this, we formed a PDA layer on a SLUG surface that exhibits thermoresponsive syneretic properties (release of liquid from the gel matrix to the outer surface) and investigated its interfacial behavior. The oil layer caused by syneresis from the SLUGs at -20 °C was found to show resistance to adhesion of universally adhesive PDA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c00062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!