Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Highly stretchable and super tough nanocomposite physical hydrogels (NCP gels) were fabricated by a facile and one-pot process. NCP gels show superior mechanical properties with tensile strength of 73 kPa-313 kPa and elongation at break of 1210-3420%. This is due to the effective strengthening mechanism: under stretching, the intermolecular hydrogen bonds can dynamically break and recombine to dissipate energy and homogenize the gel network. In addition, vinyl hybrid silica nanoparticles (VSNPs) can work as stress transfer centres to transfer stress to the grafted polymer chains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4tb01654h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!