Enhanced osteogenesis of multilayered pore-closed microsphere-immobilized hydroxyapatite scaffold via sequential delivery of osteogenic growth peptide and BMP-2.

J Mater Chem B

Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China.

Published: November 2017

AI Article Synopsis

  • - The study introduces a new bone tissue engineering scaffold that uses a combination of biofactors, specifically osteogenic growth peptide (OGP) and BMP-2, to enhance bone regeneration through a multi-peptide drug delivery system.
  • - The scaffold consists of poly(lactic-co-glycolic acid) (PLGA) microspheres and a porous hydroxyapatite (HA) structure, allowing for a coordinated release of the two peptides that aligns with different healing stages.
  • - In vitro results indicate that the dual-biofactor scaffold significantly improved the differentiation of bone marrow mesenchymal stem cells into osteoblasts compared to single biofactor or control scaffolds, suggesting a synergistic effect that enhances bone repair. *

Article Abstract

Since many complex physiological processes are controlled by multiple biomolecules, comprehensive regulation of bone tissue regeneration may be more effectively achieved by administering more than one type of biofactor. Thus, we propose a novel bone tissue engineering scaffold incorporating a multiple peptide-based drug delivery vehicle for accelerated bone regeneration. Pore-closed poly(lactic-co-glycolic acid) (PLGA) microspheres with a surface structure of multilayer polyelectrolytes ((Ha-Cs)-Hep-BMP-2-Hep-(Cs-Ha)) were prepared as multi-barrier microcarriers for osteogenic growth peptide (OGP). In addition, BMP-2 loading was achieved via a pore-closing process and layer-by-layer (LbL) assembly technique, followed by immobilization on the surface of a highly interconnected porous hydroxyapatite (HA) scaffold. On the basis of such a construction, sequential delivery of OGP and BMP-2 occurred in a coordinated manner through an orchestrated sequence of spatial changes, targeting different bone healing stages. The in vitro studies showed that OGP release was minimal (<11.7%) in the first 15 d but accelerated remarkably thereafter, while at least 56.3% of BMP-2 payload was released at this time and subsequent release was only marginal. In addition, scaffolds carrying dual-biofactor exhibited a stronger ability to induce bone marrow mesenchymal stem cell (BMSC) differentiation toward osteoblasts than those incorporating OGP or BMP-2 alone and factor-free scaffolds in terms of alkaline phosphatase (ALP) activity and osteogenic gene and protein (Runx2, COL I, and OCN) expression. The results of in vitro cell culturing demonstrated the roles of BMP-2 in osteogenic differentiation early as well as the effect of OGP on accelerated proliferation and maturation of osteoblast precursors at a later stage. Further in vivo osteogenesis studies also revealed that the dual biofactor-loaded scaffold manifested the best repair efficacy due to a potential synergistic effect of BMP-2 and OGP. Collectively, our findings suggested that such a dual delivery system may provide a therapeutic strategy sequentially targeting multiple events or mechanisms during bone healing and was proved to be a promising therapeutic scaffold for future use in bone tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7tb01970jDOI Listing

Publication Analysis

Top Keywords

hydroxyapatite scaffold
8
sequential delivery
8
osteogenic growth
8
growth peptide
8
bone tissue
8
enhanced osteogenesis
4
osteogenesis multilayered
4
multilayered pore-closed
4
pore-closed microsphere-immobilized
4
microsphere-immobilized hydroxyapatite
4

Similar Publications

The surface characteristics of scaffolds utilized in bone tissue engineering profoundly influence subsequent cellular response. This study investigated the efficacy of applying a gelatin coat to the surface of aminolysis surface-modified scaffolds fabricated through 3D printing with a polycaprolactone/hydroxyapatite nanocomposite, employing the hot-melt extrusion FDM technique. Initially, aminolysis surface modification using hexamethylenediamine enhanced surface hydrophilicity by introducing amine functional groups.

View Article and Find Full Text PDF

Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.

View Article and Find Full Text PDF

After tooth extraction, alveolar bone absorbs unevenly, leading to soft tissue collapse, which hinders full regeneration. Bone loss makes it harder to do dental implants and repairs. Inspired by the biological architecture of bone, a deformable SIS/HA (Small intestinal submucosa/Hydroxyapatite) composite hydrogel coaxial scaffold was designed to maintain bone volume in the socket.

View Article and Find Full Text PDF

Promoting angiogenesis, alleviating oxidative stress injury and inflammation response are crucial for bone healing. Herein, the deferoxamine (DFO)-loaded gelatin methacryloyl (GelMA) hydrogel coating (GelMA-DFO) was constructed on the 3D-printed poly(Glycolide-Co-Caprolactone)-hydroxyapatite (PGCL-HAP) scaffold. After the hydrogel coating was established, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and water contact angle measurement were employed to evaluate the characteristic and the biological properties were assessed.

View Article and Find Full Text PDF

Full-thickness skin wounds remian a significant and pressing challenge. In this study, we introduce a novel composite hydrogel, CS + GA + Zn-HA. This hydrogel is formulated by incorporating 1 % (1 g/100 mL) of bioactive Zinc-substituted hydroxyapatite nanoparticles (Zn-HA) and 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!