A facile synthesis method of polymer diclofenac conjugates (PDCs) based on biocompatible polyurethane chemistry that provides a high drug loading and offers a high degree of control over diclofenac (DCF) release kinetics is described. DCF incorporating monomer was reacted with ethyl-l-lysine diisocyanate (ELDI) and different amounts of polyethylene glycol (PEG) in a one-step synthesis to yield polymers with pendent diclofenac distributed along the backbone. By adjusting the co-monomers feed ratio, the drug loading could be tailored accordingly to give DCF loading of up to 38 w/w%. The release rate could also be controlled easily by changing the amount of PEG in the backbone. Above 10 w/w% of PEG, the in vitro DCF release studies in physiological conditions showed an apparent zero-order profile without an initial burst effect for up to 120 days. The PDCs described may be suitable for long-term intra-articular (IA) delivery for the treatment of osteoarthritis (OA).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7tb01518f | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Ian Potter NanoBiosensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
Metal-organic frameworks (MOFs) provide diverse applications across a wide range of scientific disciplines, including drug/nucleic acid (NA) delivery. In the subclass of MOFs, zeolitic imidazolate framework-8 (ZIF-8) is well regarded due to its exceptional physicochemical properties. Biomolecules can be encapsulated and released under precise conditions within ZIF, making it an important material for materials science and biomedical applications.
View Article and Find Full Text PDFNanoscale
January 2025
McMaster University, Department of Engineering Physics, Hamilton, ON M8S 4K1, Canada.
Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs).
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
Glioblastoma presents a significant treatment challenge due to the blood-brain barrier (BBB) hindering drug delivery, and the overexpression of matrix metalloproteinases (MMPs), which promotes tumor invasiveness. This study introduces a novel nanostructured lipid carrier (NLC) system designed for the delivery of batimastat, an MMP inhibitor, across the BBB and into the glioblastoma microenvironment. The NLCs were functionalized with epidermal growth factor (EGF) and a transferrin receptor-targeting construct to enhance BBB penetration and entrapment within the tumor microenvironment.
View Article and Find Full Text PDFACS Nano
January 2025
Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.
Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation.
View Article and Find Full Text PDFA new fusidic acid-loaded hydrogel film was prepared via the solvent casting technique using alginate and Aloe vera. The hydrogel films were optimized using different ratios of sodium alginate, Aloe vera, and glycerin. The films containing 10% glycerin (w/w of alginate) exhibited the best appearance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!