A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functionalization of bone implants with nanodiamond particles and angiopoietin-1 to improve vascularization and bone regeneration. | LitMetric

One of the major challenges in bone tissue engineering is adequate vascularization within bone substituents for nutrients and oxygen supply. In this study, the production and results of a new, highly functional bone construct consisting of a commercial three-dimensional β-tricalcium phosphate scaffold (β-TCP, ChronOS®) and hydrophilic, functionalized nanodiamond (ND) particles are reported. A 30-fold increase in the active surface area of the ChronOS + ND scaffold was achieved after modification with ND. In addition, immobilization of angiopoietin-1 (Ang-1) via physisorption within the β-TCP + ND scaffold retained the bioactivity of the growth factor. Homogeneous distribution of the ND and Ang-1 within the core of the three-dimensional scaffold was confirmed using ND covalently labelled with Oregon Green. The biological responses of the β-TCP + ND scaffold with and without Ang-1 were studied in a sheep calvaria critical size defect model showing that the β-TCP + ND scaffold improved the blood vessel ingrowth and the β-TCP + ND + ND + Ang-1 scaffold further promoted vascularization and new bone formation. The results demonstrate that the modification of scaffolds with tailored diamond nanoparticles is a valuable method for improving the characteristics of bone implants and enables new approaches in bone tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7tb00723jDOI Listing

Publication Analysis

Top Keywords

vascularization bone
12
β-tcp scaffold
12
bone implants
8
nanodiamond particles
8
bone tissue
8
tissue engineering
8
bone
7
scaffold
7
β-tcp
5
functionalization bone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!