Angiogenesis is a vital process that deals with the generation of new blood vessels from pre-existing vasculature and is well known to regulate various physiological as well as pathophysiological processes. We demonstrated that zinc oxide nanoflowers (ZONF) exhibited pro-angiogenic properties in endothelial cells through the production of intracellular reactive oxygen species (ROS), especially HO (hydrogen peroxide). The immense importance of angiogenesis in ischemic and cardiovascular diseases highlights an urgent need to comprehend the detailed molecular mechanisms underlying the ZONF induced angiogenesis process. However, the exact mechanism and signaling pathways behind nanoflowers mediated angiogenesis still remain unclear. In the present study, we report that ZONF induce angiogenesis through MAPK/Akt/eNOS mediated nitric oxide formation, which further acts in a cGMP dependent manner. We strongly believe that exploration of the molecular mechanism and signaling pathways of ZONF driven angiogenesis would be helpful for the advancement of alternative and efficient treatment strategies for ischemic and cardiovascular diseases using a nanomedicine approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6tb03323g | DOI Listing |
Chin J Integr Med
January 2025
Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
Objective: To illustrate the role of dehydrocorydaline (DHC) in chronic constriction injury (CCI)-induced neuropathic pain and the underlying mechanism.
Methods: C57BL/6J mice were randomly divided into 3 groups by using a random number table, including sham group (sham operation), CCI group [intrathecal injection of 10% dimethyl sulfoxide (DMSO)], and CCI+DHC group (intrathecal injection of DHC), 8 mice in each group. A CCI mouse model was conducted to induce neuropathic pain through ligating the right common sciatic nerve.
Sci Rep
January 2025
Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland.
The study investigated the degradation of 3-methoxy-1-propanol (3M1P) by OH using the M06-2X/6-311++G(d, p) level, with CCSD(T) single-point corrections. We focused on hydrogen atom abstraction from various alkyl groups within the molecule. The rate coefficient for 3M1P degradation was calculated from the sum of the rate coefficients corresponding to the removal of H-atoms from primary (-CH), secondary (-CH-), tertiary (-CH< ), and alcohol (-ΟH) groups.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Soil & Sustainable Agriculture, Institute of soil science, Chinese academy of sciences, Nanjing 211135, China. Electronic address:
Layered double hydroxide intercalated with mercaptosuccinic acid (MSA-CFA) holds considerable promise for remediating cadmium (Cd)-contaminated soils through selective immobilization; however, its stability under acidic conditions has yet to be investigated. The acidic stability of MSA-CFA was investigated by acid stability investigation and simulated soil acidification. In the immersion test, the cadmium dissolution rate (DR) for the Cd immobilized products of MSA-CFA (MSA-CFA-Cd) was significantly lower (2.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China.
In polar and alpine regions, global warming and landform changes are draining lakes, transforming them into permafrost with altered microbial communities and element cycling. In this study, we investigated bacterial and archaeal (prokaryotic) community changes in the newly exposed sediment of Zonag Lake (Tibetan Plateau), focusing on prokaryotic diversity, community structure, and genes involved in carbon fixation and nitrogen cycling across lateral (up to 800 m) and vertical (up to 80 cm) horizons. The results showed that prokaryotic richness decreased across the lateral horizons, coinciding with reductions in carbon concentrations.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Braunschweig - Institute of Technology, Germany. Electronic address:
Soluble guanylyl cyclase (sGC) is a well-established pharmacological target for the treatment of acute angina pectoris, pulmonary hypertension and heart failure. Histidine 105 in the heme binding pocket of sGC is a crucial residue for heme binding and natural enzyme activation by NO. It was assumed that the heme-free sGC mutants α/βH105F and α/βH105A were valuable research tools for studying NO independent sGC activators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!