Carbon dots (CDs) hold great promise as a class of fluorophores for bioimaging. Here, we report a simple solvothermal approach to prepare photoluminescent CDs derived from the antineoplastic drug etoposide. The CDs show photoluminescence ranging from 365 to 650 nm when excited at 360 nm. When excited at 405, 488 and 543 nm, strong blue, green and red fluorescence can be detected. Our experiments reveal that the CDs can penetrate into the cells in a short time and remain emissive, even at low temperature. Also, optical signals can be detected from mice after hypodermic or intravenous injection. We demonstrated that the CDs can serve as a low-cytotoxicity biological imaging agent for bioimaging in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7tb01628j | DOI Listing |
Food Chem
January 2025
School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China. Electronic address:
Resveratrol (Res), a natural antioxidant widely found in fruits, plays a crucial role in preventing various diseases. However, traditional detection methods usually rely on large amounts of toxic solvents, leading to high costs and potential health risks to researchers. In this work, an economical, green, rapid, and sensitive method for Res detection was developed using banana peel-derived nitrogen-doped carbon dots (BP-N-CDs) as fluorescent sensors.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Department of Neurosurgery, The Affiliated Ganzhou Hospital, Jiangxi Medical College, Nanchang University, Ganzhou 341000, China. Electronic address:
To address the medical challenges posed by glioblastoma, a novel and high-performance tumor inhibitor (La@FA-CDs) composed of folic acid and lanthanum nitrate hexahydrate, was successfully synthesized and demonstrated effectiveness in inhibiting the growth of U251 and LN299 cells. The microstructure of La@FA-CDs was extensively analyzed by FTIR, UV-Vis, XPS, TEM, AFM NMR, and nanoparticle size analyzer. The optical and electrical properties of La@FA-CDs were characterized using a fluorescence spectrometer and a zeta potential analyzer.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea. Electronic address:
In recent years, the design of various ultrasound responsive echogenic nanomaterials offers many advantages such as deep tissue penetration, high signal intensity, colloidal stability, biocompatibility and less expensive for ultrasound-based cancer cell imaging while providing the option to monitor the progress of tumor volume during the treatment. Further, the ability of nanomaterials to combine photo-thermal therapy (PTT) and chemotherapy has opened a new avenue in the development of cancer theranostics for synergistic cancer therapy. Herein, we report MoS nanoflowers (NFs) surface decorated with CuS nanorods (NRs) and folic acid-derived carbon dots (FACDs) using cystine-polyethyleneimine (PEI) linker for PTT-chemotherapy.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
Based on nitrogen and phosphorus co-doped carbon dots (NP-CDs), a direct, quick, and selective sensing probe for fluorometric detection of rutin has been developed. Utilizing ethylene diamine tetra acetic acid (EDTA) as a carbon and nitrogen source and diammonium hydrogen phosphate (NH)HPO as a nitrogen and phosphorus source. The NP-CDs were synthesized in less than 3 min with a straightforward one-step microwave pyrolysis process with a high quantum yield (63.
View Article and Find Full Text PDFChemMedChem
January 2025
Peking University, No.38 Xueyuan Rd, 100191, Beijing, CHINA.
Low cure rate and high death rate of cancers have seriously threatened human health. The combining multiple therapies is a promising strategy for cancer treatment. In this study, we construct a novel multinucleated nanocomplex loaded with carbon dots (CDs-SA@TAMn) that responds to tumor microenvironment for combined photothermal/chemodynamic cancer therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!