In this study, beta nickel hydroxide (β-Ni(OH)) nanosheets, one of the transition metal oxyhydroxides with two dimensional (2D) structures, were explored as a new fluorescent biosensor platform and applied in constructing optical sensors for bioanalysis. It was found that β-Ni(OH) nanosheets displayed a high fluorescence quenching ability and different affinity toward single- versus double-stranded DNA. Moreover, the absorption properties of β-Ni(OH) nanosheets can be well controlled by changing cations, solution pH and the length of DNA. In comparison with some reported 2D nanosheet platforms (e.g. graphene, metal chalcogenides), the absorbed DNA can also be desorbed by degrading the β-Ni(OH) nanosheets, which is a simple but effective DNA desorption method. Based on these findings, a sensitive and selective optical miRNA sensor with a detection limit of 1 pM was demonstrated by combining the fluorescence quenching ability of β-Ni(OH) nanosheets and duplex-specific nuclease signal amplification. The presented sensor has been successfully used for miRNA analysis in samples containing cancer cells and shown great potential in multiplexed miRNA analysis for clinical diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7tb01389bDOI Listing

Publication Analysis

Top Keywords

β-nioh nanosheets
24
optical sensors
8
fluorescence quenching
8
quenching ability
8
mirna analysis
8
β-nioh
6
nanosheets
5
nanosheets effective
4
effective sensing
4
sensing platform
4

Similar Publications

The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

Polymeric dielectrics have garnered significant interest worldwide due to their excellent comprehensive performance. However, developing polymeric dielectric films with high permittivity () and breakdown strength () and low dielectric loss (tan) presents a huge challenge. In this study, amorphous aluminum oxide (AlO, AO) transition interfaces with nanoscale thickness were constructed between titanium oxide (TiO, TO) nanosheets and polyvinylidene fluoride (PVDF) to manufacture composites (PVDF/TO@AO).

View Article and Find Full Text PDF

Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO NS). The fluorescence quenching of Hb-Fe NCs by a MnO NS can be significantly reversed by the addition of ascorbic acid.

View Article and Find Full Text PDF

Size Engineering of TiCT Nanosheets for Enhanced Supercapacitance Performance.

Molecules

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

In this research, we synthesized a series of TiCT nanosheets with varying lateral dimensions and conducted a thorough investigation into the profound relationship between the electrochemical performance of TiCT materials and their lateral sizes. This study innovatively incorporates a clever combination of small-sized and large-sized TiCT nanosheets in the electrode preparation process. This strategy yields excellent results at low scan rates, with the fabricated electrode achieving a high volumetric capacitance of approximately 658 F/g.

View Article and Find Full Text PDF

Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells.

Materials (Basel)

January 2025

Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China.

The CsPbBr perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr perovskite (FTO/c-TiO/m-TiO/CsPbBr/BP/C) solar cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!