A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-pore, silica particles with antibody-like, biorecognition sites for efficient protein separation. | LitMetric

Large-pore, silica particles with antibody-like, biorecognition sites for efficient protein separation.

J Mater Chem B

Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Published: June 2017

Natural antibodies are used widely for various applications such as in biomedical analysis, protein separation, and targeted-drug delivery, but they suffer from high cost and low stability. In this study, we developed a facile approach for the construction of antibody-like binding sites in a porous silica solid for efficient separation of bovine serum albumin (BSA) based on large-pore silica particles (LPSPs). This was accomplished by grafting two types of organosilane monomers, 3-aminopropyltriethoxylsilane (APTES) and octyltrimethoxysilane (OTMS), to provide hydrogen bonds or hydrophobic interactions with BSA through molecular imprinting technology. The resulting molecularly imprinted, large-pore silica particles (MI-LPSPs) were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TG), X-ray diffraction (XRD) and N sorption analysis. Results showed that the as-synthesized MI-LPSPs exhibited a spherical morphology, favorable stability and large pore structure. The kinetic adsorption experiments showed that the MI-LPSPs could reach equilibrium within one hour and were described well by the pseudo second-order model, indicating that chemical adsorption might be the rate-limiting step. Meanwhile, the MI-LPSPs had a large binding capacity up to 162.82 mg g and high selectivity for the recognition of BSA. Moreover, such a high binding capacity and selectivity was retained after six runs, indicating a good stability and reusability of MI-LPSPs. Thus, it is expected that a simple synthetic methodology in the present study provides a promising pathway to prepare novel imprinted materials for efficient purification and separation of target proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7tb00886dDOI Listing

Publication Analysis

Top Keywords

large-pore silica
12
silica particles
12
protein separation
8
binding capacity
8
mi-lpsps
5
particles antibody-like
4
antibody-like biorecognition
4
biorecognition sites
4
sites efficient
4
efficient protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!