2-(1-Amino-2-anthraquinonyliminomethyl)phenol (L) was facilely prepared as a spectroscopic probe by one step condensation between 1,2-diaminoanthraquinone and salicylaldehyde. The complexation of Cu ions with L through 1 : 1 chelation resulted in a rapid pink-to-blue color change and significant quenching of the fluorescence at 604 nm in 1 : 1 THF : Tris-HCl buffer. The subsequent addition of S to this solution regenerated the initial spectrum of L as a result of L being released from the L-Cu complex through a displacement mechanism, which makes L a dual-channel sensor for the naked eye detection of Cu and S ions. The system has high selectivity toward Cu and S ions even in the presence of other commonly coexisting ions and the detection limits were found to be 8.95 × 10 M and 1.36 × 10 M, respectively. Applicability of L to detect Cu ions and S ions in tap water has been demonstrated. Paper strips were fabricated for the detection of Cu and S by the colorimetric method. Furthermore, L has been successfully applied for cell imaging studies.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7tb01596hDOI Listing

Publication Analysis

Top Keywords

ions
6
anthraquinone-based highly
4
highly selective
4
selective colorimetric
4
colorimetric fluorometric
4
fluorometric sensor
4
sensor sequential
4
detection
4
sequential detection
4
detection intracellular
4

Similar Publications

Caliciviruses are a diverse group of non-enveloped, positive-sense RNA viruses with a wide range of hosts and transmission routes. Norovirus is the most well-known member of the ; the acute gastroenteritis caused by human norovirus (HuNoV), for example, frequently results in closures of hospital wards and schools during the winter months. One area of calicivirus biology that has gained increasing attention over the past decade is the conformational flexibility exhibited by the protruding (P) domains of the major capsid protein VP1.

View Article and Find Full Text PDF

Ion mobility spectrometry is successfully used as a sensor technology for different applications. A feature of this method is that characteristic ion mobility spectra are obtained for each measurement rather than a sum signal. The spectra result from the different drift velocities of ions in a drift tube at atmospheric pressure.

View Article and Find Full Text PDF

The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca, Mg, and Zn) on the stability of dalbavancin in acetate buffer was investigated. Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions after four weeks of storage at 5 °C and 55 °C was measured by RP-HPLC and HP-SEC; a longer-term study was carried out over six months at 5 °C, 25 °C, and 40 °C. Binding of 2HPβCD was characterized by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

The issue of hazardous smoke and toxic gases released from epoxy resins (EP), which often causes casualties in real fires, has limited its application. Therefore, we have developed a novel flame retardant based on a bimetallic-doped phytate-melamine (BPM) structure with Zn and Fe ions incorporated into the polymer matrix using a straightforward solution-based synthetic method. The combustion performance of the composite was evaluated using a cone calorimeter test, which showed that the peak heat release, total heat release, and total smoke production were reduced by 50%, 31.

View Article and Find Full Text PDF

Zinc-imprinted polymer (ZnIP) and non-imprinted polymer (NIP) were synthesized by radical polymerization, and their properties were studied. The novelty of the work lies in the use of humic acids isolated from coals of the Shubarkol deposit (Karaganda, Kazakhstan) as a basis for the imprinted polymer matrix, with methacrylic acid and ethylene glycol dimethacrylate as a functional monomer and a cross-linking agent, respectively. The composition and structure of ZnIP and NIP were characterized using various physicochemical methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!