Conducting hydrogels for edible electrodes.

J Mater Chem B

Soft Materials Group, School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia.

Published: July 2017

The development of highly swollen, strong, conductive hydrogel materials is necessary for the advancement of edible device research. Using a gellan gum/gelatin ionic-covalent entanglement (ICE) hydrogel, a simple method of producing conductive, edible hydrogels is described. ICE gels containing NaCl or CsCl were developed which exhibited conductivities of 200 ± 20 mS cm and 380 ± 30 mS cm, respectively. Furthermore, the potential of food grade products for use as edible electrodes was examined by analysing the electrical properties of alginate-gelatin hydrogels, Vegemite, Marmite, jelly and gold leaf. Lastly, these edible ICE gels were used to demonstrate a capacitive pressure sensor from consumable materials, which displayed a sensitivity of 0.80 ± 0.06 pF kPa for a range of 4-20 kPa. The pressure exerted by the GI tract on its contents is standardly 0.7 kPa to 6.3 kPa. This suggests potential for application in the detection of digestive pressure abnormalities such as intestinal motility disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7tb01247kDOI Listing

Publication Analysis

Top Keywords

edible electrodes
8
ice gels
8
edible
5
conducting hydrogels
4
hydrogels edible
4
electrodes development
4
development highly
4
highly swollen
4
swollen strong
4
strong conductive
4

Similar Publications

Spent mushroom substrate: A review on present and future of green applications.

J Environ Manage

January 2025

School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

The cultivation of edible mushrooms plays a significant role in revitalizing numerous rural regions in China. However, this process generates a large amount of spent mushroom substrate (SMS). Traditional methods for handling SMS, such as random stacking and incineration, lead to resource waste and environmental pollution.

View Article and Find Full Text PDF

This study aimed to assess nano-pumice (NP) from pumice mining waste as a local, cost-effective anode catalyst in microbial fuel cells (MFCs) for treating edible vegetable oil refinery wastewater (EVORW) and generating bioenergy. Pumice mining waste was converted into nano in three stages: crushing up to ≤3 cm, reducing the size of the previous step particles to 150 μm and converting the previous step particles to <100 nm. Nano-pumice prepared was coated on the carbon cloth (CC) to increase anode surface area of MFC.

View Article and Find Full Text PDF

Electrochemical sensor based on molecularly imprinted polypyrrole-MWCNTs-OH/covalent organic framework for the detection of ofloxacin in water.

Mikrochim Acta

December 2024

Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.

A platform was developed to accurately detect the content of ofloxacin (OFX) based on molecularly imprinted polypyrrole-MWCNTs-OH/1,3,5-Tris(4-aminophenyl) benzene (TAPB)-2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP)-covalent organic framework (MIP-MWCNTs-OH/COF)-modified glassy carbon electrode (GCE) sensor (MIP-MWCNTs-OH/COF/GCE). The complex of MWCNTs-OH and COF synergistically enhanced the active area and electrochemical signal, based on which a molecularly imprinted membrane was polymerized on its surface to further improve the selectivity. Under optimized conditions, the prepared MIP-MWCNTs-OH/COF/GCE sensor exhibited strong detection performance to OFX in a linear range 1.

View Article and Find Full Text PDF
Article Synopsis
  • - Phenolic antioxidants like tert-butylhydroquinone (TBHQ) are used to extend the shelf life of edible oils, but excessive amounts can harm food quality and health, highlighting the need for effective TBHQ detection methods.
  • - Researchers synthesized a new material called NiAl-LDH@GC-800 by growing nickel-aluminum double hydroxide on glucose carbon spheres and then pyrolyzing it at 800 °C, confirming its structure through various microscopy and spectroscopy techniques.
  • - This new material was used to create an electrochemical sensor for TBHQ that demonstrated high sensitivity and a low detection limit, successfully testing TBHQ levels in different edible oils like chili, peanut, and rapeseed oil.
View Article and Find Full Text PDF

Exposure and probable ingestion of fluoride through non-dietary edible items from Panipat (NCR), India.

Environ Monit Assess

November 2024

Department of Chemistry, Bhagat Phool Singh Mahila Vishwavidyalaya, Khanpur Kalan, 131305, Sonepat, Haryana, India.

The present study revealed that various non-dietary items like pan masala, chewing tobacco, betel nuts, and toothpaste may contribute to the fluoride burden of the human body. In this line, an attempt was made to analyze the fluoride content of non-dietary items collected from Panipat City of Haryana. The study depicts that intake of pan masala, chewing tobacco, betel nuts, and toothpaste expose the consumers to 21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!