Tumor markers are usually over-expressed in human body fluids during the development of cancers. Monitoring tumor markers' level is thus important for early diagnosis and screening of cancers. One way to achieve this is based on the surface enhanced Raman scattering (SERS) technique that can drastically amplify Raman signals of analytes on a plasmonic metal (e.g., Au, Ag, and Cu) surface. However, this promising method suffers from aggregation of plasmonic nanoparticles. Here we report a stable, reproducible, and facile SERS-based readout method to detect an important tumor marker, carcinoembryonic antigen (CEA). This route utilizes Au butterfly wings with natural three dimensional (3D) hierarchical sub-micrometer structures rather than relying on the aggregates of metal nanoparticles. The Au butterfly wings show excellent SERS property and are temperature (80 °C) and time (6 months) stable on a sub-micrometer scale. Thus, the detecting antibodies and enzyme-linked secondary antibodies that are usually applied in conventional enzyme-linked immunosorbent assay (ELISA) can be replaced by chemically synthesized CEA aptamers, significantly simplifying the whole detection process. We demonstrate the feasibility of this method via quantitative detection of clinical CEA level in human body fluids. This work thus demonstrates a promising tumor marker detection technique based on a hierarchical sub-micrometer SERS structure, which could be useful for the mass screening of early stage cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6tb03026bDOI Listing

Publication Analysis

Top Keywords

tumor marker
12
butterfly wings
12
marker detection
8
surface enhanced
8
enhanced raman
8
human body
8
body fluids
8
hierarchical sub-micrometer
8
tumor
5
detection
4

Similar Publications

Lung cancer represents a significant global health burden, with non-small cell lung cancer (NSCLC) being the most common subtype. The current standard of care for NSCLC has limited efficacy, highlighting the necessity for innovative treatment options. Lidocaine, traditionally recognized as a local anesthetic, has emerged as a compound with potential antitumor and anti-inflammatory capabilities.

View Article and Find Full Text PDF

Background: Breast cancer (BC) is a global challenge that affects a large portion of individuals, especially women. It has been suggested that microparticles (MPs) can be used as a diagnostic, prognostic, or therapeutic biomarker in various diseases. Moreover, MPs are known to elevate in cancer cases.

View Article and Find Full Text PDF

Doxorubicin, a widely used anthracycline antibiotic, has been a cornerstone in cancer chemotherapy since the 1960s. In addition to doxorubicin, anthracycline chemotherapy medications include daunorubicin, idarubicin, and epirubicin. For many years, doxorubicin has been the chemotherapy drug of choice for treating a broad variety of cancers.

View Article and Find Full Text PDF

Electrochemical capacitance-based aptasensor for HER2 detection.

Biomed Microdevices

January 2025

Department of Physics, Faculty of Philosophy, Science and Letter, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.

The overexpression of Human Epidermal Growth Factor Receptor 2 (HER2) protein is specifically related to tumor cell proliferation in breast cancers. Its presence in biological serum samples indicates presence or progression of cancer, becoming a promise biomarker. However, their detection needs a simple and high accuracy platform.

View Article and Find Full Text PDF

Background: Despite surgical and intravesical chemotherapy interventions, non-muscle invasive bladder cancer (NMIBC) poses a high risk of recurrence, which significantly impacts patient survival. Traditional clinical characteristics alone are inadequate for accurately assessing the risk of NMIBC recurrence, necessitating the development of novel predictive tools.

Methods: We analyzed microarray data of NMIBC samples obtained from the ArrayExpress and GEO databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!