A type of polymeric nanoparticles loading indocyanine green and Pt(ii)-porphyrins (ICG-Pt-NPs) is constructed to achieve a synergistic effect of combined photothermal and two-photon activated photodynamic therapy. The nanoparticle core comprises the photosensitizer Pt(ii)-porphyrins (PtTFPP), and organic semiconducting polymer (PFO) that acts as a two-photon antenna. Negative ICG molecules, an NIR-absorbing photothermal dye, can be loaded into the positively charged poly-l-lysine (PLL) shell of the polymeric nanoparticles via electrostatic interaction. In these carefully designed ICG-PtTFPP integrated nanoparticles, PtTFPP absorbs the photonic energy transferred by the PFO polymer under two-photon laser excitation at 740 nm to induce photodynamic cancer cell death, while ICG offers nanoparticles a strong photothermal performance under 808 nm laser irradiation. Compared with photodynamic therapy or photothermal therapy alone, the combined therapy had a significantly synergistic effect and improved the therapeutic efficacy with near-infrared irradiation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6tb03215jDOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
12
photothermal two-photon
8
polymeric nanoparticles
8
nanoparticles
5
photothermal
5
therapy
5
indocyanine green-platinum
4
green-platinum porphyrins
4
porphyrins integrated
4
integrated conjugated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!