A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-area assembly of halloysite nanotubes for enhancing the capture of tumor cells. | LitMetric

Large-area assembly of halloysite nanotubes for enhancing the capture of tumor cells.

J Mater Chem B

Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.

Published: March 2017

Here, polystyrene sulfonate sodium (PSS) modified Halloysite nanotubes (HNTs) were self-assembled into a patterned coating on a glass substrate with ordered nanotube arrays in a slit-like confined space. The microstructure of the formed patterned HNTs coating was investigated. The formed strips are more regular and almost parallel to each other with an increase in HNTs concentration. The HNTs coating formed from the 2% PSS-HNTs dispersion has the maximum nanotube alignment degree. The patterned HNTs coating was employed to capture tumor cells. The tumor cells can be captured by the HNTs coating effectively compared with a smooth glass surface due to the enhanced topographic interactions between the HNTs coating and cancer cells. The HNTs coating prepared from the 2% PSS-HNTs dispersion has the highest capture yield which is due to the ordered nanotube arrangement and the appropriate surface roughness. The HNTs coating was further conjugated with anti-EpCAM, which leads to the capture yield of MCF-7 cells reaching 92% within 3 h. The HNTs coating can capture 8 MCF-7 cells from 1 mL artificial blood samples spiked with 10 MCF-7 cells, showing the promising applications of HNTs in clinical circulating tumor cell capture for early diagnosis and monitoring of cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6tb02538bDOI Listing

Publication Analysis

Top Keywords

hnts coating
32
tumor cells
12
mcf-7 cells
12
hnts
11
coating
9
halloysite nanotubes
8
capture tumor
8
ordered nanotube
8
patterned hnts
8
pss-hnts dispersion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!