A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bio-engineered electrospun nanofibrous membranes using cartilage extracellular matrix particles. | LitMetric

Biological and biomimetic decellularized scaffolds can mimic a natural tissue environment to derive cell proliferation and differentiation without eliciting adverse immune responses during tissue regeneration. Polymeric nanofibrous membranes also served as appropriate matrices for cellular behavior because of their resemblance to physical dimensions of natural extracellular matrix (ECM), while they often have insufficient biological cues to address the cellular phenotype. In this study, we designed bio-engineered membranes through covalent immobilization of decellularized ECM (DECM) particles on the surface of electrospun nanofibers and examined the ability of these composite materials for chondrogenesis. After successful chemical decellularization of human nasal septum cartilage constructs (hNSCs), mechanical processing was carried out and particles with a diameter mean size of 5.06 ± 2.70 μm were yielded. Poly hydroxyalkanoate (PHA) nanofibrous scaffolds were functionalized with DECM particles to mimic the natural motifs of cartilage ECM. Human adipose derived stem cells (hASCs) and human primary chondrocytes (hPChs) cultured on these biofunctional scaffolds showed a significant increase in collagen formation and chondrogenic marker expression after 21 days of cell culture. These results are exciting as they indicate the feasibility of creating bio-engineered scaffolds that may be non-immunogenic as a replacement tissue and have great potential for meeting new challenges in regenerative medicine, particularly in relation to cartilage reconstruction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6tb02015aDOI Listing

Publication Analysis

Top Keywords

nanofibrous membranes
8
extracellular matrix
8
mimic natural
8
decm particles
8
bio-engineered electrospun
4
electrospun nanofibrous
4
cartilage
4
membranes cartilage
4
cartilage extracellular
4
particles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!