Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Damaged axons in the adult mammalian central nervous system (CNS), including those of the spinal cord, have extremely limited endogenous capacity to regenerate. This is the result of both the intrinsic and extrinsic inhibitory factors that limit the regeneration of adult neurons. Despite attempts to limit or eliminate the extrinsic inhibitory components, regeneration of adult neurons in the CNS is still limited. Therefore, additional factors that can further enhance the intrinsic plasticity of adult neurons need to be considered. Herein, we examine the effects of brain-derived neurotrophic factor (BDNF), a known growth factor for neuronal survival and plasticity, using an in vivo delivery method for a localized and sustained delivery to the spinal cord. A highly versatile injectable biomaterial platform for the sustained delivery of BDNF was developed using a physical blend of hyaluronic acid (HA) and methylcellulose (MC), in combination with poly-lactic-co-glycolic acid (PLGA) microparticles. Contemporary studies examining the plasticity of the CNS suggest that the spinal cord is an important site for activity-dependent learning that can mediate motor function after injury or disease. Here we utilized such a learning paradigm in combination with local and sustained BDNF application (at L3-S2) to foster spinal learning after complete spinal cord injury in rodents. Our data suggest that composite biomaterial systems such as the one described herein can be utilized for the sustained and localized delivery of therapeutics following damage to the spinal cord.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6tb01602b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!