Lactobacillus rhamnosus GG (LGG) was encapsulated in core-shell alginate-silica microcapsules by coating the electrosprayed ionogel with a silica shell via hydrolysis/condensation of alkoxysilane precursors. The viability of encapsulated LGG highly depends on the mineralisation conditions (in aqueous or organic phases), identified as a critical step. More importantly, due to the unswelling of silica and to its mesoporosity that allows nutriment-metabolite diffusion, it was possible to avoid cell leakage and additionally insure bacterial growth inside the microcapsules. The results of this work gave a proof-of-concept for controlled bacterial proliferation in microcompartments, which have straightforward applications in oral delivery of probiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6tb02802k | DOI Listing |
Phys Chem Chem Phys
May 2018
L2CM UMR CNRS-Université de Lorraine, Bvd. des Aiguillettes, BP 70239, Vandoeuvre-lès-Nancy F-54506, France.
Hybrid alginate-silicate microbeads of about 10-20 μm were synthesized by combining alginate crosslinking, silica condensation in a one pot approach using a food grade emulsion as template. A fine tuning of the formulation composition (alginate, silica and calcium sources) is necessary in order to obtain core-shell microbeads instead of unshaped and irregular fragments or even perforated spherical beads. Importantly, in situ linear rheology provides insights into the reaction mechanism as a result of the rheological fingerprint profile obtained during beads formation.
View Article and Find Full Text PDFJ Mater Chem B
October 2017
SRSMC UMR 7565, CNRS-Université de Lorraine, 54506 Vandoeuvre les Nancy, France.
The probiotic bacteria L. rhamnosus GG (LGG) were encapsulated into core-shell alginate-silica microbeads of about 500 μm through a double step synthesis involving micro-ionogel formation by electrospraying and silica coating by the sol-gel process. Formulating microparticles with sucrose as a cryoprotectant allowed maintaining bacterial viability and cultivability upon freeze-drying for weeks, as determined by plate counting.
View Article and Find Full Text PDFJ Mater Chem B
December 2016
CNRS, Structure et Réactivité des Systèmes Moléculaires Complexes, SRSMC, UMR 7565, Nancy, France.
Lactobacillus rhamnosus GG (LGG) was encapsulated in core-shell alginate-silica microcapsules by coating the electrosprayed ionogel with a silica shell via hydrolysis/condensation of alkoxysilane precursors. The viability of encapsulated LGG highly depends on the mineralisation conditions (in aqueous or organic phases), identified as a critical step. More importantly, due to the unswelling of silica and to its mesoporosity that allows nutriment-metabolite diffusion, it was possible to avoid cell leakage and additionally insure bacterial growth inside the microcapsules.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2015
Laboratory of Inorganic Materials Chemistry, University of Namur, rue de Bruxelles, 61, Namur B-5000, Belgium. Electronic address:
An efficient one-step process to synthesize highly porous (Ca-alginate-SiO2-polycation) shell: (Na-alginate-SiO2) core hybrid beads for cell encapsulation, yielding a reusable long-life photosynthetically active material for a sustainable manufacture of high-value metabolites is presented. Bead formation is based on crosslinking of an alginate biopolymer and mineralisation of silicic acid in combination with a coacervation process between a polycation and the silica sol, forming a semi-permeable external membrane. The excellent mechanical strength and durability of the monodispersed beads and the control of their porosity and textural properties is achieved by tailoring the silica and alginate loading, polycation concentration and incubation time during coacervation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!