Nanodiamond-PMO for two-photon PDT and drug delivery.

J Mater Chem B

Institut Charles Gerhardt Montpellier, UMR 5253, CC 1701 Equipe Ingénierie Moléculaire et Nano-objets, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.

Published: September 2016

In this article, we highlight the properties of nanodiamonds (ND), which were encapsulated in periodic mesoporous organosilica nanoparticles (PMO) and were able to generate reactive oxygen species for photodynamic applications upon two-photon excitation (TPE). The ND@PMO nanoparticles were characterized by various techniques and were then loaded with the anti-cancer drug doxorubicin. The release of the drug was pH sensitive and a synergistic cancer cell killing effect was observed when cancer cells were incubated with doxorubicin-loaded ND@PMO and irradiated with two-photon excitation at 800 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6tb01915cDOI Listing

Publication Analysis

Top Keywords

two-photon excitation
8
nanodiamond-pmo two-photon
4
two-photon pdt
4
pdt drug
4
drug delivery
4
delivery article
4
article highlight
4
highlight properties
4
properties nanodiamonds
4
nanodiamonds encapsulated
4

Similar Publications

Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease.

ACS Appl Mater Interfaces

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.

View Article and Find Full Text PDF

As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.

View Article and Find Full Text PDF

Electronic spectra for OThF have been recorded using fluorescence excitation and two-photon resonantly enhanced ionization techniques. Multiple vibronic bands were observed in the 340-460 nm range. Dispersed fluorescence spectra provided ground state vibrational constants and evidence of extensive vibronic state mixing at higher excitation energies.

View Article and Find Full Text PDF

Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent quenching of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation.

View Article and Find Full Text PDF

The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!