Superoxide radicals are associated with the development of many severe diseases, such as cancer. Under nonpathogenic conditions, the natural enzyme superoxide dismutase (SOD) regulates the intracellular superoxide concentrations, but nearly all tumor tissues show reduced SOD levels. Selective imaging in early progression stages remains a key requirement for efficient cancer diagnosis and treatment. Magnetic resonance imaging (MRI) as a noninvasive tool with high spatial resolution may offer advantages here, but MRI contrast agents exhibiting a redox-triggered change in the image contrast towards superoxide radicals have not been reported so far. Here we show that manganese oxide (MnO) nanoparticles (NPs) exhibit an intrinsic SOD-like activity, which is higher than that of the native Mn-dependent SOD. In addition, MnO NPs significantly enhance the MRI contrast when exposed to superoxide radicals, making them responsive MRI contrast agents for the treatment and imaging of cancer cells with reduced SOD levels.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6tb02078jDOI Listing

Publication Analysis

Top Keywords

superoxide radicals
12
mri contrast
12
superoxide dismutase
8
mno nanoparticles
8
magnetic resonance
8
resonance imaging
8
contrast superoxide
8
reduced sod
8
sod levels
8
contrast agents
8

Similar Publications

Accurate oxygen detection and measurement of its concentration is vital in biological and industrial applications, necessitating highly sensitive and reliable sensors. Optical sensors, valued for their real-time monitoring, nondestructive analysis, and exceptional sensitivity, are particularly suited for precise oxygen measurements. Here, we report a dual-emissive iridium(III) complex, IrNPh, featuring "aggregation-induced emission" (AIE) properties and used for sensitive oxygen sensing.

View Article and Find Full Text PDF

A polysaccharide from Morchella esculenta mycelia: Structural characterization and protective effect on antioxidant stress on PC12 cells against HO-induced oxidative damage.

Int J Biol Macromol

January 2025

State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; State Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Morchella esculenta (L.) Pers. is considered a precious edible and medicinal fungus due to its strict growth environment requirements, difficult to cultivate, resulted in expensive in the market.

View Article and Find Full Text PDF

Recent Advances in Electrolytes for Nonaqueous Lithium-Oxygen Batteries.

Chem Rec

January 2025

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institution of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, China.

This paper emphasizes the critical role of electrolyte selection in enhancing the electrochemical performance of nonaqueous Li-O batteries (LOBs). It provides a comprehensive overview of various electrolyte types and their effects on the electrochemical performance for LOBs, offering insights for future electrolyte screening and design. Despite recent advancements, current electrolyte systems exhibit inadequate stability, necessitating the urgent quest for an ideal nonaqueous electrolyte.

View Article and Find Full Text PDF

High performance ozone nanobubbles based advanced oxidation processes (AOPs) for degradation of organic pollutants under high pollutant loading.

J Environ Manage

January 2025

Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12 Str., 80-233, Gdansk, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea. Electronic address:

Advanced Oxidation Processes (AOPs) have proven to be an effective solution for chemical wastewater treatment, particularly for degradation of organic pollutants, especially dyes. Ozonation is recognized as one of the most prevalent AOPs. Nevertheless, some cases show a lowered efficiency of O utilization which is attributed to its inadequate distribution in the treated water causing low residence time, low mass transfer coefficient as well as shorter half-life.

View Article and Find Full Text PDF

Constructing a Polyoxometalate-Based Metal-Organic Framework for Photocatalytic Oxidation of Thioethers to Sulfoxides Utilizing In Situ-Generated Superoxide Radicals.

Inorg Chem

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Developing new photocatalysts for the selective oxidation of thioethers to high-value-added sulfoxides under low-oxygen mild conditions is a promising but challenging strategy. Here, a new polyoxometalate-based metal-organic framework (POMOF), , was successfully synthesized, wherein continuous π···π stacking interactions and direct coordination bonds not only strengthen the framework's stability but also accelerate electron transfer. A series of experiments and theoretical studies, including control experiments, kinetic studies, electrochemical spectroscopic analyses, and electron paramagnetic resonance, revealed the synergistic catalytic effect among Co(II) metal centers, BWO, and the photosensitizer TPT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!