Cutaneous chronic wounds are characterized by impaired wound healing which may lead to infection and even amputation. To surmount this problem, we developed a chitin whisker (CW)/carboxymethyl chitosan nanoparticles (CMCS NPs)/thermosensitive hydroxybutyl chitosan (HBC) composite hydrogel (CW/NPs/HBC-HG) as a wound dressing for treating chronic wounds. Upon introduction of CWs, the composite hydrogel exhibited a significant decrease in gelation temperature and enhanced mechanical properties. The storage modulus (G') of the CW/NPs/HBC-HG was 3.6 times that of the NPs/HBC-HG at 37 °C and the ex vivo rat skin test also showed that the mechanical properties were significantly improved. Linezolid, a wide-spectrum antibiotic, was dissolved directly in the water phase of the composite hydrogel, and the antibacterial activity of the composite hydrogel against Escherichia coli and Staphylococcus aureus was up to 99% until 7 days. When recombinant human epidermal growth factor (rhEGF) was encapsulated into the NPs, the CW/NPs/HBC-HG offered prolonged cell proliferation activity up to 5 days. More importantly, the in vivo chronic wound healing model evaluation in diabetic rats revealed that the CW/NPs/HBC-HG dressing promoted wound healing and accelerated reepithelialization, collagen deposition and angiogenesis. These findings demonstrated that CW/NPs/HBC-HG is a promising dressing for chronic wounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7tb00479f | DOI Listing |
Pharmaceutics
December 2024
Medical Microbiology Unit, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, Building D, 4th Floor, 06129 Perugia, Italy.
: Chronic skin wounds are characterized by inflammation, persistent infections, and tissue necrosis. The presence of bacterial biofilms prolongs the inflammatory response and delays healing. Ozone is a potent antimicrobial molecule, and many formulations have been used in the advanced therapeutic treatment of chronic wounds.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Computational Biology Laboratory, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India.
Inflammation serves as a vital response to diverse harmful stimuli like infections, toxins, or tissue injuries, aiding in the elimination of pathogens and tissue repair. However, persistent inflammation can lead to chronic diseases. Peptide therapeutics have gained attention for their specificity in targeting cells, yet their development remains costly and time-consuming.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratory of Molecular Pharmacology and Bioactive Compounds, Postgraduate Program in Health Sciences, São Francisco University, 215 São Francisco de Assis Avenue, Bragança Paulista 12916-900, São Paulo, Brazil.
Treating chronic wounds incurs substantial costs for Brazil's Unified Health System. Natural compounds, particularly propolis, are increasingly explored as low-cost alternatives due to their healing properties. Brazilian green propolis, distinct in its chemical composition, has garnered scientific interest.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
Military breachers are routinely exposed to repetitive low-level blast overpressure, placing them at elevated risk for long-term neurological sequelae. Mounting evidence suggests that circulating brain-reactive autoantibodies, generated following CNS injury, may serve as both biomarkers of cumulative damage and drivers of secondary neuroinflammation. In this study, we compared circulating autoantibody profiles in military breachers ( = 18) with extensive blast exposure against unexposed military controls ( = 19).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia.
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!