Side-chain amino acid based cationic polymer induced actin polymerization.

J Mater Chem B

Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur - 741246, Nadia, West Bengal, India.

Published: February 2017

AI Article Synopsis

Article Abstract

Actin filament dynamics is important for proper cellular functions and is controlled by hundreds of actin binding proteins inside the cells. There are several natural and synthetic compounds that are able to bind actin and alter the actin filament dynamics. Since the actin dynamics changes due to nonspecific electrostatic interactions between negatively charged actin and positively charged proteins, and natural or synthetic compounds, herein we report the synthesis of poly(tert-butyl carbamate (Boc)-l-alanine methacryloyloxyethyl ester) (P(Boc-Ala-HEMA)) homopolymer in a controlled fashion by the reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequent deprotection of the Boc groups in the homopolymer under acidic conditions resulted in a positively charged polymer with primary amine moieties at the side chains. This cationic polymer (P(NH -Ala-HEMA)), is able to nucleate actin in vitro. The cationic polymer and corresponding partially fluorescence tagged polymer are able to nucleate actin filament in vivo. These polymers are nontoxic to the cultured cells and also stabilize the filamentous actin in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6tb02814dDOI Listing

Publication Analysis

Top Keywords

cationic polymer
12
actin filament
12
actin
10
filament dynamics
8
natural synthetic
8
synthetic compounds
8
positively charged
8
nucleate actin
8
actin vitro
8
polymer
5

Similar Publications

Arsenocholine-containing methacrylate (MTAsB) inspired by marine organisms was synthesized by the reaction of 2-bromoethyl methacrylate and trimethylarsine to investigate its polymerization behavior and the fundamental properties of the resulting polymer. Controlled radical polymerization of MTAsB proceeded in the presence of a copper catalyst and imidazolium chloride at 60 °C for 8 h to give a water-soluble polycation with a 94% yield. The smaller amount of nonfreezing water and intermediate water of poly(MTAsB) was observed compared with that of the ammonium-containing polycations.

View Article and Find Full Text PDF

Biosolids has several challenges, such as its high water content, huge volume, odour, and pathogen presence. Regulations require biosolids to be reused and disposed of safely. Polymer conditioning focuses on volume reduction, leaving pathogen and odour reduction unaddressed.

View Article and Find Full Text PDF

NIR-II photo-accelerated polymer nanoparticles boost tumor immunotherapy via PD-L1 silencing and immunogenic cell death.

Bioact Mater

April 2025

School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Immune checkpoint blockade (ICB) therapy is a widely favored anti-tumor treatment, but it shows limited response to non-immunogenic "cold" tumors and suffers from drug resistance. Photodynamic therapy (PDT), as a powerful localized treatment approach, can convert a "cold tumor" into a "hot tumor" by inducing immunogenic cell death (ICD) in tumor cells, thereby enhancing tumor immunogenicity and promoting tumor immunotherapy. However, the effectiveness of PDT is largely hindered by the limited penetration depth into tumor tissues.

View Article and Find Full Text PDF

Aqueous antibacterial colloids are potential agents that kill bacteria via physical contact. Conventionally, antibacterial agents are designed to be small, cationic, or hydrophobic. However, hydrophobic materials easily aggregate in aqueous media, drastically inhibiting their activity.

View Article and Find Full Text PDF

Efficient removal of TcO from radioactive effluents while recovering drinking water remains a challenge. Herein, an excellent ReO (a nonradioactive surrogate of TcO ) scavenger is presented through covalently bonding imidazolium poly(ionic liquids) polymers with an ionic porous aromatic framework (iPAF), namely iPAF-P67, following an adsorption-site density-addition strategy. It shows rapid sorption kinetics, high uptake capacity, and exceptional selectivity toward ReO .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!