Photo-antimicrobial polymeric films releasing nitric oxide with fluorescence reporting under visible light.

J Mater Chem B

Laboratory of Photochemistry, Department of Drug Science, Viale Andrea Doria 6, 95125, Catania, Italy.

Published: August 2016

A novel photoresponsive molecular hybrid has been embedded in poly(lactic-co-glycolic acid) (PLGA) to give an antibacterial polymeric film generating nitric oxide (NO) under visible light, with concomitant fluorescence reporting of NO release. The molecular hybrid integrates a nitroaniline NO photodonor and a coumarin latent fluorophore in the same molecular skeleton and results in quite homogeneous distribution in the polymer matrix where it preserves well the photobehavior exhibited in solution. The doped PLGA film shows an excellent optical transparency and can be excited by visible light leading to the production of NO and the parallel fluorescence revival of the coumarin fluorophore, which acts as an optical NO reporter. Photogenerated NO diffuses out of the polymer film, can be transferred to a biological milieu and induces remarkable antibacterial activity against Escherichia coli.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6tb01388kDOI Listing

Publication Analysis

Top Keywords

visible light
12
nitric oxide
8
fluorescence reporting
8
molecular hybrid
8
photo-antimicrobial polymeric
4
polymeric films
4
films releasing
4
releasing nitric
4
oxide fluorescence
4
reporting visible
4

Similar Publications

The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.

Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.

Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Previous research has shown that smoking tobacco is associated with changes or differences in brain volume and cortical thickness, resulting in a smaller brain volume and decreased cortical thickness in smokers compared with non-smokers. However, the effects of smokeless tobacco on brain volume and cortical thickness remain unclear. This study aimed to investigate whether the use of shammah, a nicotine-containing smokeless tobacco popular in Middle Eastern countries, is associated with differences in brain volume and thickness compared with non-users and to assess the influence of shammah quantity and type on these effects.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

A genomic variation map provides insights into potato evolution and key agronomic traits.

Mol Plant

January 2025

Inner Mongolia Potato Engineering and Technology Research Centre, Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China. Electronic address:

Hybrid potato breeding based on diploid inbred lines is transforming the way of genetic improvement of this staple food crop, which requires a deep understanding of potato domestication and differentiation. Here, we resequenced 314 diploid wild and landrace accessions to generate a variome map of 47,203,407 variants. Using the variome map, we discovered the reshaping of tuber transcriptome during potato domestication, characterized genome-wide differentiation between landrace groups Stenotomum and Phureja, and identified a jasmonic acid biosynthetic gene possibly affecting tuber dormancy period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!