Highly dispersed magnetic molecularly imprinted nanoparticles with well-defined thin film for the selective extraction of glycoprotein.

J Mater Chem B

Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.

Published: April 2016

Antibody-free analysis is a potential method for glycoprotein analysis, but the development of this method has been limited by its unfavorable selectivity in recent years. Magnetic molecular imprinting, which integrates the fast separation of magnetic materials with high selectivity towards templates in molecular imprinting, was expected to be an effective sample pretreatment in antibody-free analysis for glycoproteins. However, the aggregation of magnetic imprinted nanoparticles and thick molecularly imprinted polymer (MIP) shells on the surface of magnetic carriers caused an unfavorable adsorption capacity, and unsatisfactory rebinding and elution rates, and has limited its application in glycoprotein extraction. Thus, highly dispersed magnetic molecularly imprinted nanoparticles (MMINs) with a well-defined thin film for the selective extraction of glycoprotein HRP were developed in this work. A solvothermal method was used in this work to improve the dispersity of FeO NPs (nanoparticles) and the MMINs. The thickness of the MIP film was optimized to provide the optimum extraction efficiency. Thus the adsorption capacity of the MMINs, the rebinding rate and the elution rate of the templates were greatly improved. As a result, the prepared MMINs not only exhibited excellent selectivity and high adsorption capacity to HRP, and an outstanding tolerance for interference, but also showed excellent rebinding and elution rates for extraction application. Furthermore, this method provided a reliable way to improve conventional magnetic molecular imprinting, and showed great potential for the analysis of glycoprotein tumor biomarkers in clinics in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6tb00409aDOI Listing

Publication Analysis

Top Keywords

molecularly imprinted
12
imprinted nanoparticles
12
molecular imprinting
12
adsorption capacity
12
highly dispersed
8
dispersed magnetic
8
magnetic molecularly
8
well-defined thin
8
thin film
8
film selective
8

Similar Publications

A novel method was established using a restricted access material combined with a molecularly imprinted polymer (RAM-MIP) as the sorbent material in solid phase extraction (SPE) for clean-up of α-endosulfan, β-endosulfan, endosulfate, endosulfan-ether, endosulfan lactone, heptachlor, heptachlor--epoxide, and heptachlor--epoxide in pork and gas chromatography (GC) for determination. The RAM-MIP was prepared by precipitation polymerization by using endosulfan as the template, methacrylic acid (MAA) as the monomer, glycidyl methacrylate (GMA) as the pro-hydrophilic co-monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinker, azobisisobutyronitrile (AIBN) as the initiator, and toluene as the porogen. Ultraviolet spectroscopy (UV) and H-nuclear magnetic resonance (H-NMR) analysis verified that MAA interacted specifically with endosulfan in a ratio of 1 : 1 in the pre-polymerization solution.

View Article and Find Full Text PDF

This study aimed to develop molecularly imprinted polymer (MIP) nanoparticles specifically for the selective extraction and enrichment of progesterone (P) from royal jelly (RJ), and quantitatively analyzed them by ultra-performance-liquid chromatography electrospray ionization mass spectrometry (UPLC-ESI-MS). Gaussian software-based theoretical calculations identified methacrylic acid (MAA) as the optimal functional monomer for its strong binding affinity to P. MIP was synthesized by precipitation polymerization, and the preparation process of MIP was optimized by one-way variance design and response surface methodology.

View Article and Find Full Text PDF

Ampicillin (AMP) ranks third among the top ten most frequently sold antibiotic combinations globally, raising concerns due to its extensive use. Improper disposal practices in agriculture, aquaculture, and healthcare have led to environmental contamination of water sources with elevated AMP levels. Current methods for detecting such contamination are costly, require sophisticated equipment, and depend on skilled personnel and unstable natural receptors.

View Article and Find Full Text PDF

In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.

View Article and Find Full Text PDF

Self-powered photoelectrochemical sensor based on molecularly imprinted polymer-coupled CBFO photocathode and AgS/SnS photoanode for ultrasensitive dimethoate sensing.

Anal Chim Acta

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:

Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!