Recently, photoresponsive nanoparticles have been widely used to develop drug delivery systems (DDSs) wherein light is used as an external stimulus to trigger drug release in a spatially and temporally controlled fashion. Real time monitoring DDSs are also gaining much interest due to their capability of monitoring drug release in situ. In this context we designed a new photoresponsive real time monitoring nanoparticle based on photoluminescent silicon quantum dots (SiQDs) using the o-nitrobenzyl (ONB) derivative as a phototrigger for the controlled release of anticancer drug chlorambucil (Cbl). The strong fluorescence of SiQDs was initially quenched by ONB. Upon irradiation ONB triggered the release of the drug switching on the fluorescence of SiQDs to monitor the drug release. We reported a new and simple strategy to synthesise amine functionalised silicon quantum dots and covalently conjugated phototrigger ONB with caged anticancer drug Cbl onto it. Newly designed photoresponsive theranostic ONBCbl-SiQDs performed three important functions: (i) nanocarriers for drug delivery, (ii) controlled drug release under both one photon and two-photon excitation, and (iii) photoswitchable fluorescent nanoparticles for real-time monitoring of drug release based on the photoinduced electron transfer (PET) process. In vitro biological studies revealed the efficient cellular internalisation and cancer cell destruction ability of ONBCbl-SiQDs upon photoirradiation. ONBCbl-SiQDs exhibit a successful example of combining multiple functions into a single system for drug delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5tb02045jDOI Listing

Publication Analysis

Top Keywords

drug release
20
real time
12
time monitoring
12
silicon quantum
12
quantum dots
12
drug delivery
12
drug
11
photoresponsive real
8
delivery systems
8
monitoring drug
8

Similar Publications

Genes and proteins expression profile of 2D vs 3D cancer models: a comparative analysis for better tumor insights.

Cytotechnology

April 2025

University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413 India.

When juxtaposed with 2D cell culture models, multicellular tumor spheroids demonstrate a capacity to faithfully replicate certain features inherent to solid tumors. These include spatial architecture, physiological responses, the release of soluble mediators, patterns of gene expression, and mechanisms of drug resistance. The morphological and behavioural similarities between 3D-cultured cells and cells within tumor masses highlight the potential of these models in studying cancer biology and drug responses.

View Article and Find Full Text PDF

Polysorbates degrading enzymes in biotherapeutics - a current status and future perspectives.

Front Bioeng Biotechnol

January 2025

Pharmaceutical Development Biologicals, TIP, Boehringer Ingelheim Pharma GmbH & Co., KG, Innovation Unit, Biberach an der Riss, Germany.

Polysorbates, in particular polysorbate (PS) 20 and 80, are the most commonly used surfactants for stabilising biotherapeutics produced by biotechnological processes. PSs are derived from ethoxylated sorbitan (a derivative of sorbitol) esterified with fatty acids of varying chain length and degree of saturation. In the past, these surfactants have been reported to have specific liabilities.

View Article and Find Full Text PDF

Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions.

View Article and Find Full Text PDF

Background: In clinical practice, imiquimod is used to treat Human Papillomavirus (HPV)-related lesions, such as condyloma and Cervical Intraepithelial Neoplasia (CIN). Metronidazole is the most commonly prescribed antibiotic for bacterial vaginosis. The study developed biodegradable imiquimod- and metronidazole-loaded nanofibrous mats and assessed their effectiveness for the topical treatment of cervical cancer, a type of HPV-related lesion.

View Article and Find Full Text PDF

A Multifunctional MIL-101-NH(Fe) Nanoplatform for Synergistic Melanoma Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.

Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.

Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!