Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mesenchymal stem cells (MSCs) have attracted great interest in the field of regenerative medicine, particularly in bone regeneration. Osteogenic differentiation from MSCs is regulated by various environmental factors including hormones, growth factors, chemicals and physical cues from biomaterials. We present the use of electroactive degradable copolymers to guide the osteogenic differentiation from bone marrow derived MSCs (BMSCs). The biodegradable conductive copolymers based on polylactide and tunable contents of the aniline oligomer were synthesized by ring opening polymerization and free radical polymerization, and subsequent functionalization with the aniline tetramer. Electroactive nanofibrous scaffolds were created via a thermally induced phase separation technique. The cell culture of BMSCs and MC3T3-E1 cells on electroactive copolymers showed that these copolymers were cytocompatible and the proliferation for both cells was significantly enhanced. Osteogenic differentiation from BMSCs on the electroactive copolymers was promoted compared to polylactide in terms of gene expression and von Kossa staining. Furthermore, protein adsorption on the electroactive copolymer surface was greatly increased, and this may contribute to the enhanced proliferation and differentiation of BMSCs. This is the first report about degradable electroactive polymers directing osteogenic differentiation from BMSCs and the results indicated that electroactive degradable polymers have great potential for application in bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5tb01899d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!