Laser light triggered smart release of silibinin from a PEGylated-PLGA gold nanocomposite.

J Mater Chem B

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, V.le F. Stagno d'Alcontres 31, 98166, Messina, Italy.

Published: December 2015

In this work a new remotely-triggered drug delivery system based on PEG-PLGA_Au nanocomposite is proposed. Due to the optical properties of gold nanoparticles (Au NPs), the nanovector allows on-demand control of the dose, the timing and the duration of the drug release, upon irradiation with red laser light. The Au NPs are synthesized by laser ablation and subsequently embedded into the PEG-PLGA copolymer via a modified emulsion-diffusion method, devised in such a way that both Au NPs and silibinin (SLB), a flavonolignan with promising anti-neoplastic effects, can be co-loaded into the polymeric system in a single step procedure. A combination of analytical techniques including nuclear magnetic resonance (NMR), static and dynamic light scattering (SLS, DLS), gel permeation chromatography (GPC), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), infrared (FTIR) spectroscopy and scanning/transmission electron microscopies (SEM/STEM/TEM), have been used to study the structural and morphological properties of the nanocomposite. The loading efficiency and the drug content, evaluated by UV-vis absorption optical spectroscopy, are 89% and 8.8%, respectively. Upon laser irradiation the system releases the encapsulated drug with a higher efficiency (∼10%) than that without irradiation. This behaviour indicates that our nanoplatform is responsive to light and it could be considered a promising new type of light-activated drug delivery carrier applicable to the biomedical field.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5tb01076dDOI Listing

Publication Analysis

Top Keywords

laser light
8
drug delivery
8
drug
5
laser
4
light triggered
4
triggered smart
4
smart release
4
release silibinin
4
silibinin pegylated-plga
4
pegylated-plga gold
4

Similar Publications

Deep-ultraviolet (DUV) light is essential for applications including fabrication, molecular research, and biomedical imaging. Compact metalenses have the potential to drive further innovation in these fields, provided they utilize a material platform that is cost-effective, durable, and scalable. In this work, we present aluminum nitride (AlN) metalenses as an efficient solution for DUV applications.

View Article and Find Full Text PDF

The phonon inverse Faraday effect describes the emergence of a dc magnetization due to circularly polarized phonons. In this work we present a microscopic formalism for the phonon inverse Faraday effect. The formalism is based on time-dependent second order perturbation theory and electron phonon coupling.

View Article and Find Full Text PDF

A combination of gold nanoparticles and laser photobiomodulation to boost antioxidant defenses in the recovery of muscle injuries caused by Bothrops jararaca venom.

Lasers Med Sci

January 2025

Laboratory of Pathophysiology Experimental, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.

Unlabelled: This study aimed to evaluate gold nanoparticles (GNPs) and photobiomodulation (PBM), associated with antibothropic serum (AS), to treat a muscle lesion induced by Bothrops jararaca venom.

Methods: 108 Swiss male mice were used, divided into nine groups (n = 12) with different combinations of treatments. Animals were inoculated with 250 µg of B.

View Article and Find Full Text PDF

The Linac Coherent Light Source (LCLS) is the world's first x-ray free electron laser. It is a scientific user facility operated by the SLAC National Accelerator Laboratory, at Stanford, for the U.S.

View Article and Find Full Text PDF

Chlorin e6: a promising photosensitizer of anti-tumor and anti-inflammatory effects in PDT.

Nanomedicine (Lond)

January 2025

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.

Photodynamic therapy (PDT) involves the activation of photosensitizers (PSs) by visible laser light at the target site to catalyze the production of reactive oxygen species, resulting in tumor cell death and blood vessel closure. The efficacy of PDT depends on the PSs, the amount of oxygen, and the intensity of the excitation laser. PSs have been extensively researched, and great efforts have been made to develop an ideal photosensitizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!