A 2-dimensional tungsten disulfide-acetylene black (WS-AB) composite is synthesized by a simple hydrothermal method to achieve excellent electrochemical properties for applications as a DNA biosensor. The biosensor is fabricated based on the Au nanoparticles (AuNPs) and WS-AB composite modified electrode, which subsequently is used to couple with a capture probe by an Au-S bond, then modified with target DNA, auxiliary DNA and bio-H1-bio-H2 (H1-H2) to perform hybridization chain reaction for signal amplification. Herein, two DNA hairpins H1 and H2 are opened by the recognition probe. The nicked double helices from hybridization chain reaction are used to immobilize horseradish peroxidase enzymes via biotin-avidin reaction, which produces signal-amplification detection of target DNA through the catalytic reaction of the hydrogenperoxide + hydroquinone system. Under optimum conditions, the as-prepared biosensor shows a good linear relationship between the current value and logarithm of the target DNA concentration ranging from 0.001 pM to 100 pM and a detection limit as low as 0.12 fM. Moreover, the fabricated biosensor exhibits good selectivity to differentiate the one-base mismatched DNA sequence. This work will open a pathway for ultrasensitive detection of other biorecognition events and gene-related diseases based on layered WS-AB and hybridization chain reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5tb02214bDOI Listing

Publication Analysis

Top Keywords

hybridization chain
16
chain reaction
16
target dna
12
dna
8
reaction signal
8
signal amplification
8
ws-ab composite
8
reaction
6
layered tungsten
4
tungsten disulfide/acetylene
4

Similar Publications

Snails belonging to the genus Biomphalaria serve as obligatory intermediate hosts for the trematode Schistosoma mansoni, the causative agent for the most widespread form of schistosomiasis. The simpler nervous systems of gastropod molluscs, such as Biomphalaria, provide advantageous models for investigating neural responses to infection at the cellular and network levels. The present study examined neuropeptides related to cholecystokinin (CCK), a major multifunctional regulator of central nervous system (CNS) function in mammals.

View Article and Find Full Text PDF

Recently, there has been growing interest in the role of circular RNAs (circRNAs) in the progression of human cancers. Cellular senescence, a known anti-tumour mechanism, has been observed in several types of cancer. However, the regulatory interplay of circRNAs with cellular senescence in pancreatic cancer (PC) is still unknown.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

The dCas9/crRNA linked immunological assay (dCLISA) for sensitive, accurate, and facile drug resistance gene analysis.

Biosens Bioelectron

January 2025

Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 210002, Nanjing, Jiangsu Province, China; Department of Orthopedics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002, Nanjing, Jiangsu Province, China; Division of Trauma and Acute Care Surgery, Department of Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 210002, Nanjing, Jiangsu Province, China. Electronic address:

The rapid and reliable diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) is essential for preventing the spread of MRSA infections and guiding therapeutic strategies. However, there is still a huge challenge in further simplifying MRSA detection procedures and improving detection selectivity to reduce false-positive results. In this study, we developed a derivative CRISPR-associated protein 9/CRISPR-derived RNA Linked Immunological Assay (dCLISA) for the sensitive and specific detection of MRSA.

View Article and Find Full Text PDF

Bimodal In Situ Analyzer for Circular RNA in Extracellular Vesicles Combined with Machine Learning for Accurate Gastric Cancer Detection.

Adv Sci (Weinh)

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, School of Laboratory Medicine and Biotechnology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.

Circular RNAs in extracellular vesicles (EV-circRNAs) are gaining recognition as potential biomarkers for the diagnosis of gastric cancer (GC). Most current research is focused on identifying new biomarkers and their functional significance in disease regulation. However, the practical application of EV-circRNAs in the early diagnosis of GC is yet to be thoroughly explored due to the low accuracy of EV-circRNAs analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!