To enhance the treatment efficiency of photothermal therapy (PTT) with very little light-associated side effect, we have constructed a highly effective PTT nanoplatform for fluorescence and MRI dual imaging-guided PTT of cancer, based on IR806 dye and iron oxide complex functionalized with mPEG-PCL-G2.0PAMAM-Cit, which can be for charge-conversion for targeted accumulation in tumor. Combination of iron oxide nanoparticles and IR806 improve light to thermal conversion efficiency and lower light irradiation dose. In vitro and in vivo tests demonstrated that an effective dual imaging-guided PTT as low as 0.25 W cm could be realized under a light irradiation of 808 nm. These efforts highlight the potential of this PTT nanoplatform in "precision medicine".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5tb01455g | DOI Listing |
Int J Nanomedicine
December 2024
Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261031, People's Republic of China.
Background: Melanoma is an aggressive skin tumor with limited therapeutic options due to rapid proliferation, early metastasis, and poor prognosis. Baicalin (BA), a natural flavonoid, shows promise in inducing ferroptosis and apoptosis but faces challenges of poor solubility and bioavailability. To address these issues, we developed a multifunctional drug delivery system: manganese-doped ZIF-8 nanoparticles (ZIF(Mn)) loaded with BA and modified with folic acid (FA) and polyethylene glycol (PEG).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
Triple-negative breast cancer (TNBC) with highly malignant and aggressive, still faces challenges in treatment due to the single treatment and side effects. It is urgent to develop an advanced theranostic platform against TNBC. Herein, an "all-in-one" nano-system Au/Cu nanodots/doxorubicin@nanospheres (Au/CuNDs/DOX@NS) with dual-responsive properties was designed for dual-mode imaging-guided combination treatment of TNBC.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore. Electronic address:
Biomacromolecules play a critical role in advancing disease diagnosis and treatment. Traditional carriers often lack real-time tracking capabilities, controlled drug release, and may induce adverse effects for delivering biomacromolecules. Aggregation-induced emission luminogens (AIEgens) provide significant advantages in biomacromolecule delivery, enabling real-time fluorescence imaging and reactive oxygen species generation for photodynamic therapy (PDT).
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People's Republic of China.
Introduction: Pancreatic carcinoma (PC) is a highly malignant digestive tumor. Nanotechnology-based minimally invasive techniques have been proposed to provide a new opportunity for PC treatment.
Methods: A minimally invasive nanoplatform (named HA/DOX-AuNRs) is fabricated by HA modifying and DOX loading Au nanorings (AuNR).
Adv Mater
December 2024
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China.
Surgery remains an essential treatment for managing drug-resistant focal epilepsy, but its accessibility and efficacy are limited in patients without distinct structural abnormalities on magnetic resonance imaging (MRI). Potassium ion (K), a critical marker for seizure-associated neuronal signaling, shows significant promise for designing sensors targeting hidden epileptic foci. However, existing sensors cannot cross the blood-brain barrier and lack the ability to specifically enrich and amplify K signals in the brain with high temporal and spatial resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!