The alarming rise in antibiotic-resistant pathogenic bacteria demands a prudent approach in the generation of therapeutic antibacterials. The present study illustrates the development of a potent amphiphilic bactericidal material tailored to leverage interactions with metal-reactive groups (MRGs) present in the bacterial cell surface envelope. Complexation of Zn(ii) with a neutral pyridine-based synthetic amphiphile (C1) generated the cationic C1-Zn, which exhibited manyfold higher membrane-directed bactericidal activity compared to the neutral C1, or the cationic amphiphile bearing two pyridinium head groups (C2). The relevance of MRGs in C1-Zn-bacteria interactions was validated by amphiphile-bacteria binding studies and metal protection assays performed with Mg(ii). C1-Zn retained its bactericidal activity even in simulated gastric fluid (SGF) and the enhanced membrane-directed bactericidal activity of C1-Zn could be garnered in adjuvant applications to increase the efficacy of the therapeutic antibiotic erythromycin. Given the relevance of Zn(ii) in S. aureus biofilm formation, the antibiofilm potential of the amphiphile C1 realized through Zn(ii) complexation could be demonstrated. The lack of resistance in target bacteria coupled with a favorable therapeutic index (IC/MIC) and non-toxic nature hold significant implications for C1-Zn as a potential antibacterial therapeutic material.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5tb01259gDOI Listing

Publication Analysis

Top Keywords

bactericidal activity
12
neutral pyridine-based
8
bactericidal material
8
membrane-directed bactericidal
8
therapeutic
5
bactericidal
5
zinc complex
4
complex neutral
4
amphiphile
4
pyridine-based amphiphile
4

Similar Publications

Bactericidal Metal-Organic Gallium Frameworks - Synthesis to Application.

Mol Pharm

December 2024

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Gallium, a trace metal not found in its elemental form in nature, has garnered significant interest as a biocide, given its ability to interfere with iron metabolism in bacteria. Consequently, several gallium compounds have been developed and studied for their antimicrobial properties but face challenges of poor solubility and formulation for delivery. Organizing the metal into three-dimensional, hybrid scaffolds, termed metal-organic frameworks (MOFs), is an emerging platform with potential to address many of these limitations.

View Article and Find Full Text PDF

Gallic Acid: A Potent Metabolite Targeting Shikimate Kinase in .

Metabolites

December 2024

Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia.

is a highly multidrug-resistant pathogen resistant to almost all classes of antibiotics; new therapeutic strategies against this infectious agent are urgently needed. Shikimate kinase is an enzyme belonging to the shikimate pathway and has become a potential target for drug development. This work describes the search for Food and Drug Administration (FDA)-approved drugs and natural compounds, including gallic acid, that could be repurposed as selective shikimate kinase inhibitors by integrated computational and experimental approaches.

View Article and Find Full Text PDF

SR21, a kind of eukaryotic heterotrophic organism rich in unsaturated fatty acids, is an emerging microbial alternative to fish oil. The dietary inclusion of 15% SR21 was optimal for the growth performance of zebrafish. Previous studies demonstrated that fructose-1,6-bisphosphate aldolase (FBA) of is a valuable broad-spectrum antigen against various pathogens in aquaculture (e.

View Article and Find Full Text PDF

Efficacy of carbonyl cyanide-3-chlorophenylhydrazone in combination with antibiotics against .

Microbiol Spectr

December 2024

National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Institute, Capital Medical University, Beijing, China.

Given the intrinsic resistance of to a wide range of conventional antibiotics, it is urgent to explore new therapeutic approaches to manage this infection effectively. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a proton pump inhibitor, has shown good bacteriostatic activity against . This study aimed to determine its synergistic antimicrobial effects when combined with commonly used antibiotics.

View Article and Find Full Text PDF

Quorum quenching effects of linoleic and stearic acids on outer membrane vesicle-mediated virulence in .

Biofouling

December 2024

Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi, Vellore, India.

is a pathogenic bacterium that can infect humans and animals, yet the role of its outer membrane vesicles (OMVs) in mediating pathogenicity remains underexplored. This study evaluated the effects of linoleic acid (LA) and stearic acid (SA) on quorum sensing (QS)-mediated violacein production, biofilm formation, and OMV biogenesis in . Our findings revealed that 2 mM LA and 1 mM SA effectively quench QS, leading to a significant reduction in violacein production, biofilm formation, and OMV biogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!