Evaluation of enzymatically crosslinked injectable glycol chitosan hydrogel.

J Mater Chem B

Department of Orthopaedic Surgery, UConn Health, E-7041, MC-3711, 263 Farmington Avenue, Farmington, Connecticut 06030, USA.

Published: July 2015

Enzymatically cross-linkable phenol-conjugated glycol chitosan was prepared by reacting glycol chitosan with 3-(4-hydroxyphenyl)propionic acid (HPP). The chemical modification was confirmed by FTIR, H-NMR and UV spectroscopy. Glycol chitosan hydrogels (HPP-GC) with or without rhBMP-2 were prepared by the oxidative coupling of the substituted phenol groups in the presence of hydrogen peroxide and horse radish peroxidase. Rheological characterization demonstrated the feasibility of developing hydrogels with varying storage moduli by changing the polymer concentration. The gel presented a microporous structure with pore sizes ranging from 50-350 μm. The good viability of encapsulated 7F2 osteoblasts indicated non-toxicity of the gelation conditions. In vitro release of rhBMP-2 in phosphate buffer solution showed ∼11% release in 360 h. The ability of the hydrogel to maintain the in vivo bioactivity of rhBMP-2 was evaluated in a bilateral critical size calvarial bone defect model in Col3.6 transgenic fluorescent reporter mice. The presence of fluorescent green osteoblast cells with overlying red alizarin complexone and yellow stain indicating osteoclast TRAP activity confirmed active cell-mediated mineralization and remodelling process at the implantation site. The complete closure of the defect site at 4 and 8 weeks post implantation demonstrated the potent osteoinductivity of the rhBMP-2 containing gel.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5tb00663eDOI Listing

Publication Analysis

Top Keywords

glycol chitosan
16
evaluation enzymatically
4
enzymatically crosslinked
4
crosslinked injectable
4
glycol
4
injectable glycol
4
chitosan
4
chitosan hydrogel
4
hydrogel enzymatically
4
enzymatically cross-linkable
4

Similar Publications

Sustained Release of Curcumin from Cur-LPs Loaded Adaptive Injectable Self-Healing Hydrogels.

Polymers (Basel)

December 2024

National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.

Biological tissue defects are typically characterized by various shaped defects, and they are prone to inflammation and the excessive accumulation of reactive oxygen species. Therefore, it is still urgent to develop functional materials which can fully occupy and adhere to irregularly shaped defects by injection and promote the tissue repair process using antioxidant and anti-inflammatory mechanisms. Herein, in this work, phenylboronic acid modified oxidized hyaluronic acid (OHAPBA) was synthesized and dynamically crosslinked with catechol group modified glycol chitosan (GCHCA) and guar gum (GG) into a hydrogel loaded with curcumin liposomes (Cur-LPs) which were relatively uniformly distributed around 180 nm.

View Article and Find Full Text PDF

It is crucial to precisely strike the bacterially infected area and avoid damaging healthy tissue in bacterial infection treatment. Herein, we report an acidity-triggered aggregation antibacterial nanoplatform based on biodegradable mesoporous organic silica nanoparticles (MON NPs). The surface of MON NPs modified with polydopamine (PDA) encapsulated ciprofloxacin (CIP) and methylene blue (MB) and was then further grafted with glycol chitosan to obtain MB/CIP@MON-PDA-GCS NPs (MCMPG NPs).

View Article and Find Full Text PDF

Highly efficient dip catalysts using bacterial cellulose impregnated with self-crosslinked glycol chitosan and silver nanoparticles for 4-nitrophenol reduction.

Int J Biol Macromol

November 2024

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:

The application of environmentally friendly and sustainable catalysts requires efficient and safe preparation methods using cheap and renewable materials. Although many metal nanoparticles (NPs) have low colloidal stability, they are still very effective as catalysts. Using a straightforward method, we developed a bacterial cellulose-glycol chitosan-silver (BC-GCS-Ag) nanocomposite, by introducing both AgNPs and self-crosslinked GCS within the BC network.

View Article and Find Full Text PDF

Nasal administration of polysaccharides-based nanocarrier combining hemoglobin and diferuloylmethane for managing diabetic kidney disease.

Int J Biol Macromol

December 2024

Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Taipei Medical University Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan. Electronic address:

The management of diabetic kidney disease (DKD) faces challenges stemming from intricate pathologies and suboptimal biodistributions during drug delivery. Although clinically available anti-inflammatory agents hold considerable promise for treating DKD, their therapeutic effectiveness is limited when utilized in isolation. To address this limitation, we introduced a novel self-oriented nanocarrier termed F-GCS@Hb-DIF, designed to synergistically integrate the therapeutic diferuloylmethane (DIF), the polysaccharide fucoidan/glycol chitosan (F-GCS), and phototherapeutic hemoglobin (Hb).

View Article and Find Full Text PDF

Introduction: Docetaxel (DTX) is a chemotherapeutic drug that has high toxicity and low bioavailability. To solve these problems, PLGA nanoparticles (NPs) were loaded with DTX and coated with mucoadhesive polymers; chitosan (CS), carboxymethyl chitosan (CMCS), or glycol chitosan(GCS). The NPs were characterized for size, charge, and polydispersity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!