Future progress in materials for tissue engineering and 3D cell cultures applications requires control of two key physical properties: nanoscale mechanical properties and mass transport. These requirements remain uncontrolled partly due to a lack of physical parameters and quantitative measurements. Using chitosan scaffolds as a model system in close-to-physiological conditions and a combination of experimental techniques and theory, we link structure with local nanomechanical properties. Additionally we introduce a parameter, the free volume, to predict variations in transport properties. By fabricating nanocomposites with single walled carbon nanotubes (SWNTs) we are able to test our approach: incorporation of acid-treated, soluble, ∼80 nm SWNTs in a chitosan matrix leads to a 2 fold increase in mean local elastic modulus and a decrease of 3% of the free volume available for oxygen diffusion. Inclusion of hydrophobic, ∼800 nm SWNTs leads to a 100 fold increase of elastic modulus and doubles the voids percentage available for the transport of glucose.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5tb00154dDOI Listing

Publication Analysis

Top Keywords

free volume
12
elastic modulus
12
local elastic
8
fold increase
8
sub-nanoscale free
4
volume local
4
modulus chitosan-carbon
4
chitosan-carbon nanotube
4
nanotube biomimetic
4
biomimetic nanocomposite
4

Similar Publications

Background: Locoregional therapy (LRT) in patients with hepatocellular carcinoma (HCC) before liver transplantation (LT) has a role in improving the tumor biology and post-LT survival outcome apart from downstaging and bridging. We retrospectively analyzed our database of adult living donor liver transplants (LDLT) for HCC, to compare the survival outcomes in Group-1 (upfront-LT, HCC within Milan/UCSF/AFP<1000 ng/ml) and Group-2 (LT post-LRT, HCC beyond UCSF/irrespective of tumor burden with AFP>1000 ng/ml). We also explored the risk factors for recurrence on follow-up.

View Article and Find Full Text PDF

Aim: This study leveraged standard-of-care CT scans of patients receiving unilateral radiotherapy (RT) for early tonsillar cancer to detect volumetric changes in the carotid arteries, and determine whether there is a dose-response relationship.

Methods: Disease-free cancer survivors (>3 months since therapy and age > 18 years) treated with intensity modulated RT for early (T1-2, N0-2b) tonsillar cancer with pre- and post-therapy contrast-enhanced CT scans available were included. Patients treated with definitive surgery, bilateral RT, or additional RT before the post-RT CT scan were excluded.

View Article and Find Full Text PDF

Papillary tumors of the pineal region (PTPR) are extremely rare malignancies that make up less than 0.1% of primary brain tumors. They are usually treated with surgery and adjuvant tumor bed radiotherapy (RT).

View Article and Find Full Text PDF

The soft nature of Metal-Organic Frameworks (MOFs) sets them apart from other non-synthetic porous materials. Their flexibility allows the framework components to rearrange in response to environmental changes, leading to different states and properties. The work extends this concept to titanium frameworks, demonstrating control over charge transport in porous molecular crystals.

View Article and Find Full Text PDF

Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!