AI Article Synopsis

Article Abstract

In this paper we report the synthesis and characterization of biocompatible multi-functional magnetic nanoparticles (MNPs) able to enhance the intracellular transport of N-methylated drugs. The FeO magnetic core was first functionalized with a mixed monolayer consisting of two different phosphonic acids having terminal acetylenic and amino groups, which provide an active platform for further functionalization with organic molecules. Then, a tetraphosphonate cavitand receptor (Tiiii) bearing an azide moiety and the N-hydroxysuccinimide (NHS) activated forms of poly(ethylene glycol) (PEG), folic acid (FA) and carboxy-X-rhodamine (Rhod) were covalently anchored on alkyne and amine moieties respectively, through 1,3-dipolar cycloaddition and EDC/NHS coupling reactions. The obtained MNPs are biocompatible and possess magnetic, luminescence and recognition properties which make them suitable for multimodal theranostic applications. In particular, combined confocal microscopy and cytotoxicity experiments showed that these multi-functional MNPs are able to recognize a specific drug "in situ" and promote its cellular internalization, thus enhancing its efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5tb00547gDOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
8
multifunctional magnetic
4
nanoparticles enhanced
4
enhanced intracellular
4
intracellular drug
4
drug transport
4
transport paper
4
paper report
4
report synthesis
4
synthesis characterization
4

Similar Publications

An innovative magnetic immunoassay was developed for the voltammetric detection of carbohydrate antigen-125 (CA-125) on a home-made microfluidic device including a multisyringe pump, selection valve and magneto-controlled detection cell. Two kinds of biofunctionalized nanostructures including anti-CA-125 capture antibody-conjugated magnetic beads and anti-CA-125 detection antibody-labeled silver-polypyrrole (Ag-PPy) nanohybrids were utilized for a sandwiched immunoreaction in the presence of CA-125. With the help of an external magnet, the formed magnetic immunocomplexes were attached to the sensing interface to activate the electrical contact between Ag-PPy nanohybrids and the base electrode, thus resulting in the switching on of the sensor circuit for the generation of voltammetric signals thanks to electroactive Ag-PPy nanohybrids.

View Article and Find Full Text PDF

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

The effectiveness of magnetic nanoparticles in removing pollutants during water treatment is well established, but their introduction into aquatic ecosystems raises significant toxicity concerns. This study investigates the histological and physiological effects of zinc ferrite magnetic nanoparticles (ZnFeOMNPs) on the Mediterranean mussel (Mytilus galloprovincialis) and examines the impact of concurrent exposure to these nanoparticles and the insecticide thiomethoxam (TMX). Mussels were exposed to nominal concentrations of ZnFeOMNPs (1, 10, 100 mg/L) both individually and with TMX.

View Article and Find Full Text PDF

Extraction and quantitation of fentanyl in exhaled breath condensate using a magnetic dispersive solid phase based on graphene oxide and covalent organic framework composite and LC-MS/MS analysis.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan. Electronic address:

Free fentanyl is responsible for its pharmacological effects, but its total concentration is typically determined for therapeutic drug monitoring purposes. Determination of fentanyl concentration can help reduce the prescribed doses, leading to fewer side effects and increased effectiveness. Therefore, predicting free drug concentration in pharmaceutical research is crucial.

View Article and Find Full Text PDF

Advancements in molecular imaging probes for precision diagnosis and treatment of prostate cancer.

J Zhejiang Univ Sci B

January 2025

Department of Orthopedics, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.

Prostate cancer is the second most common cancer in men, accounting for 14.1% of new cancer cases in 2020. The aggressiveness of prostate cancer is highly variable, depending on its grade and stage at the time of diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!