Robust biopolymer based ionic-covalent entanglement hydrogels with reversible mechanical behaviour.

J Mater Chem B

Soft Materials Group, School of Chemistry and Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia.

Published: August 2014

Emerging applications of hydrogels such as soft robotics and cartilage tissue scaffolds require hydrogels with enhanced mechanical performance. We report the development of a robust biopolymer based ionic-covalent entanglement network hydrogel made from calcium cross-linked gellan gum and genipin cross-linked gelatin. The ratio of the two polymers and the cross-linker concentrations significantly affected the mechanical characteristics of the hydrogels. Hydrogels with optimized composition exhibited compressive fracture stress and work of extension values of up to 1.1 ± 0.2 MPa and 230 ± 40 kJ m for swelling ratios of 37.4 ± 0.6 and 19 ± 1, respectively. The compressive and tensile mechanical properties, swelling behavior (including leachage), pH sensitivity and homogeneity are discussed in detail. Fully swollen hydrogels (swelling ratio of 37.4 ± 0.6) were able to recover 95 ± 2% and 82 ± 7% of their energy dissipation (hysteresis) at 37 °C after reloading to either constant stress (150 kPa) or constant strain (50%), respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4tb00258jDOI Listing

Publication Analysis

Top Keywords

robust biopolymer
8
biopolymer based
8
based ionic-covalent
8
ionic-covalent entanglement
8
hydrogels
6
entanglement hydrogels
4
hydrogels reversible
4
mechanical
4
reversible mechanical
4
mechanical behaviour
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!