In this study, polyurethane (PU)/hydrogel composites were fabricated for wound healing applications. The hydrogel is a copolymer of thermosensitive N-isopropyl acrylamide (NIPAAm) and acrylic acid (AAc). γ-ray irradiation was employed to simultaneously copolymerize NIPAAm with AAc and graft the hydrogel onto porous PU. Fibroblast growth factor-2 (FGF-2) was incorporated into the composite to facilitate wound healing. The physical properties of the composites were characterized, the in vitro release of FGF-2 was examined, and in vivo tests were conducted. The results indicate that the thermosensitive hydrogel can absorb most of the wound exudates due to its high water uptake ability. Due to its thermosensitive properties, the PU/hydrogel composite is easier to strip off than that of commercial wound dressing, which prevents additional injury to the wound when replacing the wound dressing. In vivo results show that the PU/hydrogel composite incorporating FGF-2 could accelerate wound healing and reduce scar formation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4tb01638fDOI Listing

Publication Analysis

Top Keywords

wound healing
16
pu/hydrogel composites
8
fibroblast growth
8
growth factor-2
8
pu/hydrogel composite
8
wound dressing
8
wound
7
stimulation wound
4
healing
4
pu/hydrogel
4

Similar Publications

Monitoring deep wounds is challenging but necessary for high-quality medical treatment. Current methodologies for deep wound monitoring are typically limited to indirect clinical symptoms or costly non-real-time imaging diagnosis. Herein, a smart system is proposed that enables in situ monitoring of deep wounds' status through a semi-implantable device composed of 2 seamlessly connected functional components: 1) the well-designed, microchannel-structured sampling needles that efficiently and conveniently collect samples from deep wound anatomical locations, and 2) the multiplex biochemical testing compartment that facilitates the immediate and persistent detection of multiple biochemical indicators based on a color image processing software accessible to a conventional smartphone.

View Article and Find Full Text PDF

Cultured human embryonic stem cells (hESCs) can develop genetic anomalies that increase their susceptibility to transformation. In this study, we characterized a variant hESC (vhESC) line and investigated the molecular mechanisms leading to the drift towards a transformed state. Our findings revealed that vhESCs up-regulate EMT-specific markers, accelerate wound healing, exhibit compromised lineage differentiation, and retain pluripotency gene expression in teratomas.

View Article and Find Full Text PDF

Background/aim: Hydrogen therapy has demonstrated potential as an antioxidant and anti-inflammatory intervention, particularly in the management of chronic diseases such as chronic kidney disease (CKD) and autoimmune conditions. This case report presents the possible therapeutic benefits of molecular hydrogen capsule treatment in enhancing renal function and alleviating chronic fatigue in an elderly female with coronary artery disease (CAD), type 2 diabetes mellitus (DM) complicated by nephropathy, and systemic lupus erythematosus (SLE). The aim of this study was to investigate the efficacy of adjunctive hydrogen therapy in an elderly patient with multiple chronic comorbidities.

View Article and Find Full Text PDF

Background/aim: Organometallic complexes can decrease adhesion, migration, invasion of cancer cells, mainly through regulation of the extracellular matrix and therefore act against metastases. The aim was to investigate the anti-invasive properties of a rhenium-based metal compound, rhenium(I)-diselenoether (Re-diSe) and its effects on matrix metalloproteinase MMP-2, a key player in metastatic processes, in cultured MDA-MB231 triple-negative breast cancer cells.

Materials And Methods: Matrigel was utilized to assess cancer cell adhesion to the extracellular matrix.

View Article and Find Full Text PDF

The self-assembled peptide RADA16-I (RADARADARADARADA) has been widely used in biomaterials. However, studies on the practical application of self-assembled peptide hydrogels loaded with bioactive peptides are still insufficient. In this study, we successfully prepared the peptide nanofiber gel RGJ by incorporating the bioactive peptides A8SGLP-1 (G) and Jagged-1 (J) into RADA16-I (R) in specific ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!