Multicomponent particles have emerged in recent years as new compartmentalized colloids with two sides of different chemistry or polarity that have opened up a wide field of unique applications in medicine, biochemistry, optics, physics and chemistry. A drawback of particles containing a ZnO hemisphere is their low stability in biological environment due to the amphoteric properties of Zn. Therefore we have synthesized monodisperse Au@ZnO Janus particles by seed-mediated nucleation and growth whose ZnO domain was coated selectively with a thin SiO layer as a protection from the surrounding environment that imparts stability in aqueous media while the Au domain remained untouched. The thickness of the SiO layer could be precisely controlled. The SiO coating of the oxide domain allows biomolecule conjugation (e.g. antibodies, proteins) in a single step for converting the photoluminescent and photocatalytic active Janus nanoparticles into multifunctional efficient vehicles for cell targeting. The SiO-coated functionalized nanoparticles were stable in buffer solutions and other aqueous systems. Biocompatibility and potential biomedical applications of the Au@ZnO@SiO Janus particles were assayed by a cell viability analysis by co-incubating the Au@ZnO@SiO Janus particles with epithelia cells and compared to those of uncoated ZnO.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4tb02017kDOI Listing

Publication Analysis

Top Keywords

janus particles
16
au@zno janus
8
sio layer
8
au@zno@sio janus
8
particles
6
janus
5
silica-coated au@zno
4
particles stability
4
stability epithelial
4
epithelial cells
4

Similar Publications

We synthesized rigid, macromolecular brushes with well-defined and quantized brush lengths on a gold nanoparticle substrate by using a macromolecular "grafting from" approach. The macromonomers used in these brushes were thiol- and maleimide-functionalized peptide coiled coil "bundlemers" that fold into discrete 4 nm × 2 nm (length × diameter) cylindrical nanoparticles. With each added peptide macromonomer layer, brush thickness increased by approximately the length of a single bundlemer nanoparticle.

View Article and Find Full Text PDF

Mechanistic understanding of pH as a driving force in cancer therapeutics.

J Mater Chem B

January 2025

Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.

The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.

View Article and Find Full Text PDF

Preparation and characterization of tildipirosin-loaded solid lipid nanoparticles for the treatment of intracellular infections.

Biomater Sci

January 2025

School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.

To enhance the antibacterial efficacy of tildipirosin against (S.A.) infections, optimized solid lipid nanoparticles loaded with tildipirosin (SLN-TD) were developed, using docosanoic acid (DA), octadecanoic acid (OA), hexadecanoic acid (HA), and tetradecanoic acid (TA) as lipid components.

View Article and Find Full Text PDF

Purpose: Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Oxaliplatin (OXA) is currently the primary chemotherapeutic agent for CRC, but its efficacy is limited by the tumor microenvironment (TME). Here, we present a combined approach of chemotherapy and TME modulation for CRC treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!