High viscosity is important for normal intracellular homeostasis. In this study, nanoporous drug delivery systems (DDSs), including mesoporous silica nanoparticles (MSNs) and layer by layer (LBL) microcapsules, with a viscosity enhanced release (VER) effect were designed and prepared, and their drug release behaviors in a sticky environment with a high viscosity were investigated using rhodamine B, methylene blue and doxorubicin (DOX) as model drugs. The results showed that the drug release rate from DDSs in a biomimetic high viscosity solution was 7 to 8 times higher than that in water. A semipermeable membrane model was used to explain the VER effect. The results indicate that the existence of macromolecules in the release medium caused a VER effect. The VER effect found in this study will provide a new concept to guide the design of DDSs in a high viscosity environment in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5tb00267b | DOI Listing |
Rev Sci Instrum
January 2025
Center for Hypergravity Experiment and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China.
Hypergravity high-temperature and high-pressure experiments are a powerful tool for studying geological processes over long periods. A new centrifugal hypergravity piston cylinder apparatus has been developed for beam centrifuge. The unique design of this centrifugal hypergravity piston cylinder apparatus is that the hydraulic system and the press are relatively independent.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
The production of high molecular weight polyethylene particles in aqueous environments has received considerable attention, yet reports on the formation of polyethylene oil within water remain scarce. Herein, we present findings that demonstrate the oligomerization of ethylene by certain iminopyridyl Pd(II) catalysts in water, resulting in the synthesis of hyperbranched ethylene oligomers. It is worth highlighting the intriguing observation that these catalysts exhibited a remarkable catalytic longevity in aqueous medium and ultimately facilitated the generation of a substantial liquid polyolefin phase from water.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education and Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region and Key Laboratory of Microbiology, College of Heilongjiang Province and School of Life Sciences, Heilongjiang University, Harbin, China.
Background: Jersey milk, known for its high protein content, is an excellent base for yogurt production. Given that Jersey milk is derived from Jersey cows, this study was to isolate probiotics from Jersey cow feces and investigate their potential as alternative starter cultures for fermenting Jersey milk. Our goal was to develop new starter cultures specifically suited for Jersey yogurt production, while also contributing to the diversity of fermentation agents available for dairy products.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Turkey.
Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China.
Dynamic high-pressure microfluidization (DHPM) is an emerging treatment technology and has been widely used for the recovery of natural polysaccharides. The aim of the present contribution is to discuss the DHPM-assisted extraction and processing of polysaccharides from some foods and by-products by reviewing the instrument and working principle, procedures, key parameters, and effects of DHPM on the structures, food properties, and bioactivities of resulting polysaccharides. It was found that a DHPM instrument with Z-type chamber is preferable for extracting polysaccharides, and a DHPM with Y-type chamber is applicable for processing polysaccharides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!