Magnesium alloy is a potential biomedical implant because of its outstanding biodegradability and mechanical properties. But the poor corrosion resistance of AZ91 magnesium alloy in physiological solution limits its biomedical applications. In order to improve the corrosion resistance and biological performance of AZ91 magnesium alloy, we have fabricated a strontium-substituted porous hydroxyapatite (Sr-HAP)/zinc oxide (ZnO) duplex layer on AZ91 magnesium alloy by electrodeposition. The porous Sr-HAP/ZnO duplex-layer coating on AZ91 magnesium alloy was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, high-resolution scanning electron microscopy and energy dispersive X-ray analysis. Also, the mechanical properties of the duplex-layer coating were evaluated using adhesion and Vickers micro-hardness tests. The effects of the duplex-layer coating on the corrosion behavior of AZ91 magnesium alloy were also investigated in simulated body fluid using electrochemical studies. The potentiodynamic polarization and electrochemical impedance spectroscopy results indicated that the corrosion resistance of AZ91 magnesium alloy was significantly improved by the duplex-layer coating. The in vitro cell-material interaction of the duplex-layer coating was observed with human osteosarcoma MG63 cells for cell viability at 1, 4 and 7 days of incubation and the coating exhibited good biocompatibility. Hence, from the obtained results we believe that the duplex-layer made of ZnO together with porous Sr-HAP on AZ91 magnesium alloy could provide effective corrosion protection and enhanced bioactivity. Thus, duplex-layer-coated AZ91 magnesium alloy can serve as a promising candidate for orthopedic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4tb00960f | DOI Listing |
In Vitro Model
December 2024
Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.
Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China. Electronic address:
In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Shanxi Key Laboratory of Magnesium-Based Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
In this work, the Mg-8Li-3Al-0.3Si (LAS830) alloy was prepared by the vacuum melting method. The as-cast alloy was subjected to backward extrusion at 250 °C and then spun at 250 °C.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China.
Laser shock peening (LSP) is an effective method for enhancing the fatigue life and mechanical properties of Ti alloys. However, there is limited research on the effects of LSP on crystal structure and dislocation characteristics. In this study, Ti-6Al-4V alloy was subjected to laser shock peening with varying laser power levels.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Qinghai Provincial Key Laboratory of Nanomaterials and Technology, School of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China.
Sodium tungstate (NaWO) was filled into the micropores and onto the surface of a magnesium alloy microarc oxidation (MAO) coating by means of vacuum impregnation. Subsequently, the coating was sealed through silane treatment to synergistically boost its corrosion resistance. The phase composition of the coating was inspected using XRD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!