A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A photoacoustic approach for monitoring the drug release of pH-sensitive poly(β-amino ester)s. | LitMetric

Drug delivery systems are capable of delivering medications to target sites and controlled releasing payloads to circumvent common problems associated with traditional drugs such as low bioavailability and undesired side-effects. Real-time and spatio-temporal monitoring of the drug release kinetics is crucial for evaluating treatment efficacy. The photoacoustic tomography (PAT) imaging technique has become an emerging tool for non-invasively studying the drug release behaviour of drug-loaded nanocarriers under physiological conditions. In this work, we prepared PEG modified poly(β-amino ester) graft copolymers with pH-sensitive properties, which were proved by pyrene fluorescence and pH titration measurements. The copolymers could form micelle-like nanoparticles with hydrophobic cores at pH 7.4 and dissociated into single chains in mildly acidic media. The anticancer drug doxorubicin (DOX) and the near-infrared fluorescence squaraine (SQ) dye as a built-in PAT reporter molecule were loaded into the hydrophobic core of micelles simultaneously, and their release profiles were investigated by using UV/Vis, fluorescence spectrometers and the PAT technique. The polymer micelles were stable at pH 7.4 and released the loaded molecules quickly under mildly acidic conditions, accompanied by the change of photoacoustic signals. The drug-loaded micelles entered into human breast cancer MCF-7 cells by endocytosis and accumulated in the lysosomes that provide an acidic environment to promote the release of DOX, which were monitored by PAT imaging. The time-dependent photoacoustic signals in tissue-mimic phantoms containing micelle-like nanoparticle treated cells reflected the drug release process in lysosomes, which was further validated by using a cell-based confocal fluorescence microscope.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4tb00319eDOI Listing

Publication Analysis

Top Keywords

drug release
16
monitoring drug
8
pat imaging
8
mildly acidic
8
photoacoustic signals
8
drug
6
release
6
photoacoustic
4
photoacoustic approach
4
approach monitoring
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!